Exemple #1
0
def eaSimple(population, toolbox, cxpb, mutpb, ngen, stats=None,
             halloffame=None, verbose=__debug__, pset=None, store=True):
    """

    Parameters
    ----------
    population
    toolbox
    cxpb
    mutpb
    ngen
    stats
    halloffame
    verbose
    pset
    store

    Returns
    -------

    """
    len_pop = len(population)
    logbook = Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    random_seed = random.randint(1, 1000)
    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]

    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    # fitnesses = parallelize(n_jobs=4, func=toolbox.evaluate, iterable=invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit[0],
        ind.expr = fit[1]

    if halloffame is not None:
        halloffame.update(population)
    random.seed(random_seed)
    record = stats.compile_(population) if stats else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)
    data_all = {}
    # Begin the generational process
    for gen in range(1, ngen + 1):

        if store:
            if pset:
                subp = partial(sub, subed=pset.rep_name_list, subs=pset.name_list)
                data = [{"score": i.fitness.values[0], "expr": subp(i.expr)} for i in halloffame.items[-5:]]
            else:
                data = [{"score": i.fitness.values[0], "expr": i.expr} for i in halloffame.items[-5:]]
            data_all['gen%s' % gen] = data
        # select_gs the next generation individuals
        offspring = toolbox.select_gs(population, len_pop)

        # Vary the pool of individuals
        offspring = varAnd(offspring, toolbox, cxpb, mutpb)
        if halloffame is not None:
            offspring.extend(halloffame)

        random_seed = random.randint(1, 1000)
        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]

        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        # fitnesses = parallelize(n_jobs=4, func=toolbox.evaluate, iterable=invalid_ind)

        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit[0],
            ind.expr = fit[1]

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)

            if halloffame.items[-1].fitness.values[0] >= 0.95:
                print(halloffame.items[-1])
                print(halloffame.items[-1].fitness.values[0])
                break
        random.seed(random_seed)
        # Replace the current population by the offspring
        population[:] = offspring

        # Append the current generation statistics to the logbook
        record = stats.compile_(population) if stats else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)
    store = Store()
    store.to_txt(data_all)
    return population, logbook
Exemple #2
0
param_grid3 = [{'n_estimators': [100, 200], 'learning_rate': [0.1, 0.05]}]

# 2 model
ref = RFECV(me2, cv=3)
x_ = ref.fit_transform(x, y)
gd = GridSearchCV(me2, cv=3, param_grid=param_grid2, scoring="r2", n_jobs=1)
gd.fit(x_, y)
score = gd.best_score_

# 1,3 model
# gd = GridSearchCV(me1, cv=3, param_grid=param_grid1, scoring="r2", n_jobs=1)
# gd.fit(x,y)
# es = gd.best_estimator_
# sf = SelectFromModel(es, threshold=None, prefit=False,
#                  norm_order=1, max_features=None)
# sf.fit(x,y)
# feature = sf.get_support()
#
# gd.fit(x[:,feature],y)
# score = gd.best_score_

# 其他模型
# 穷举等...

# 导出
# pd.to_pickle(gd,r'C:\Users\Administrator\Desktop\skk\gd_model')
# pd.read_pickle(r'C:\Users\Administrator\Desktop\skk\gd_model')
store.to_pkl_sk(gd)
store.to_csv(x)
store.to_txt(score)
Exemple #3
0
def multiEaSimple(population, toolbox, cxpb, mutpb, ngen, stats=None,
                  halloffame=None, verbose=__debug__, pset=None, store=True, alpha=1):
    """

    Parameters
    ----------
    population
    toolbox
    cxpb
    mutpb
    ngen
    stats
    halloffame
    verbose
    pset
    store
    alpha

    Returns
    -------

    """
    logbook = Logbook()
    logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    random_seed = random.randint(1, 1000)
    # fitnesses = list(toolbox.map(toolbox.evaluate, [str(_) for _ in invalid_ind]))
    # fitnesses2 = toolbox.map(toolbox.evaluate2, [str(_) for _ in invalid_ind])
    fitnesses = parallelize(n_jobs=6, func=toolbox.evaluate, iterable=[str(_) for _ in invalid_ind])
    fitnesses2 = parallelize(n_jobs=6, func=toolbox.evaluate2, iterable=[str(_) for _ in invalid_ind])

    def funcc(a, b):
        """

        Parameters
        ----------
        a
        b

        Returns
        -------

        """
        return (alpha * a + b) / 2

    for ind, fit, fit2 in zip(invalid_ind, fitnesses, fitnesses2):
        ind.fitness.values = funcc(fit[0], fit2[0]),
        ind.values = (fit[0], fit2[0])
        ind.expr = (fit[1], fit2[1])
    if halloffame is not None:
        halloffame.update(population)
    random.seed(random_seed)
    record = stats.compile_(population) if stats else {}
    logbook.record(gen=0, nevals=len(invalid_ind), **record)
    if verbose:
        print(logbook.stream)
    data_all = {}
    # Begin the generational process
    for gen in range(1, ngen + 1):
        # select_gs the next generation individuals
        offspring = toolbox.select_gs(population, len(population))
        # Vary the pool of individuals
        offspring = varAnd(offspring, toolbox, cxpb, mutpb)
        if halloffame is not None:
            offspring.extend(halloffame.items[-2:])

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        random_seed = random.randint(1, 1000)
        # fitnesses = toolbox.map(toolbox.evaluate, [str(_) for _ in invalid_ind])
        # fitnesses2 = toolbox.map(toolbox.evaluate2, [str(_) for _ in invalid_ind])
        fitnesses = parallelize(n_jobs=6, func=toolbox.evaluate, iterable=[str(_) for _ in invalid_ind])
        fitnesses2 = parallelize(n_jobs=6, func=toolbox.evaluate2, iterable=[str(_) for _ in invalid_ind])

        for ind, fit, fit2 in zip(invalid_ind, fitnesses, fitnesses2):
            ind.fitness.values = funcc(fit[0], fit2[0]),
            ind.values = (fit[0], fit2[0])
            ind.expr = (fit[1], fit2[1])

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offspring)
            if halloffame.items[-1].fitness.values[0] >= 0.95:
                print(halloffame.items[-1])
                print(halloffame.items[-1].fitness.values[0])
                print(halloffame.items[-1].values[0])
                print(halloffame.items[-1].values[1])
                break

        if store:
            if pset:
                subp = partial(sub, subed=pset.rep_name_list, subs=pset.name_list)
                data = [{"score": i.values[0], "expr": subp(i.expr[0])} for i in halloffame.items[-2:]]
                data2 = [{"score": i.values[1], "expr": subp(i.expr[1])} for i in halloffame.items[-2:]]
            else:
                data = [{"score": i.values[0], "expr": i.expr} for i in halloffame.items[-2:]]
                data2 = [{"score": i.values[1], "expr": i.expr[2]} for i in halloffame.items[-2:]]
            data_all['gen%s' % gen] = list(zip(data, data2))
        random.seed(random_seed)
        # Replace the current population by the offspring
        population[:] = offspring
        # Append the current generation statistics to the logbook
        record = stats.compile_(population) if stats else {}
        logbook.record(gen=gen, nevals=len(invalid_ind), **record)
        if verbose:
            print(logbook.stream)
    if store:
        store1 = Store()
        store1.to_txt(data_all)

    return population, logbook