def _test(self, read_indexes, debug_file_prefix=None): read_indexes = reversed(read_indexes) simple_filename1 = self.filename1 + '_simple.fastq' self.write_simple_fastq(simple_filename1, read_indexes) workdir = os.path.dirname(self.filename1) os.chdir(workdir) simple_filename2 = get_reverse_filename(simple_filename1) censored_filename1 = os.path.join(workdir, 'rerun.censored1.fastq') censored_filename2 = os.path.join(workdir, 'rerun.censored2.fastq') trimmed_filename1 = os.path.join(workdir, 'rerun.trimmed1.fastq') trimmed_filename2 = os.path.join(workdir, 'rerun.trimmed2.fastq') prelim_censored_filename = os.path.join(workdir, 'rerun_censored.prelim.csv') prelim_trimmed_filename = os.path.join(workdir, 'rerun_trimmed.prelim.csv') with open(self.bad_cycles_filename, 'rU') as bad_cycles: bad_cycles = list(csv.DictReader(bad_cycles)) with open(simple_filename1, 'rU') as simple1, \ open(censored_filename1, 'w') as censored1: censor(simple1, bad_cycles, censored1, use_gzip=False) with open(simple_filename2, 'rU') as simple2, \ open(censored_filename2, 'w') as censored2: censor(simple2, bad_cycles, censored2, use_gzip=False) with open(prelim_censored_filename, 'w+') as prelim_censored_csv, \ open(prelim_trimmed_filename, 'w+') as prelim_trimmed_csv: prelim_map(censored_filename1, censored_filename2, prelim_censored_csv, nthreads=BOWTIE_THREADS) trim((simple_filename1, simple_filename2), self.bad_cycles_filename, (trimmed_filename1, trimmed_filename2), use_gzip=False) prelim_map(trimmed_filename1, trimmed_filename2, prelim_trimmed_csv, nthreads=BOWTIE_THREADS) prelim_censored_csv.seek(0) censored_map_count = self.count_mapped(prelim_censored_csv) prelim_trimmed_csv.seek(0) trimmed_map_count = self.count_mapped(prelim_trimmed_csv) return self.get_result(censored_map_count, trimmed_map_count)
def test_trim(tmpdir): read1_content = 'TATCTACTAACTGTCGGTCTAC' read2_content = reverse_and_complement(read1_content) expected1 = build_fastq(read1_content) expected2 = build_fastq(read2_content) tmp_path = Path(str(tmpdir)) fastq1_path = tmp_path / 'read1.fastq' fastq2_path = tmp_path / 'read2.fastq' trimmed1_path = tmp_path / 'trimmed1.fastq' trimmed2_path = tmp_path / 'trimmed2.fastq' fastq1_path.write_text(expected1) fastq2_path.write_text(expected2) trim([fastq1_path, fastq2_path], 'no_bad_cycles.csv', [str(trimmed1_path), str(trimmed2_path)], use_gzip=False) trimmed1 = trimmed1_path.read_text() trimmed2 = trimmed2_path.read_text() assert trimmed1 == expected1 assert trimmed2 == expected2
def process(self, pssm, excluded_seeds=(), excluded_projects=(), force_gzip=False, use_denovo=False): """ Process a single sample. :param pssm: the pssm library for running G2P analysis :param excluded_seeds: seeds to exclude from mapping :param excluded_projects: project codes to exclude from reporting :param bool force_gzip: treat FASTQ files as gzipped, even when they don't end in .gz :param bool use_denovo: True if de novo assembly should be used, instead of bowtie2 mapping against references. """ logger.info('Processing %s (%r).', self, self.fastq1) scratch_path = self.get_scratch_path() makedirs(scratch_path) use_gzip = force_gzip or self.fastq1.endswith('.gz') sample_info = self.load_sample_info() with open(self.read_summary_csv, 'w') as read_summary: trim((self.fastq1, self.fastq2), self.bad_cycles_csv, (self.trimmed1_fastq, self.trimmed2_fastq), summary_file=read_summary, use_gzip=use_gzip, skip=self.skip, project_code=sample_info.get('project')) if use_denovo: logger.info('Running merge_for_entropy on %s.', self) with open(self.read_entropy_csv, 'w') as read_entropy_csv: merge_for_entropy(self.trimmed1_fastq, self.trimmed2_fastq, read_entropy_csv, scratch_path) write_merge_lengths_plot(self.read_entropy_csv, self.merge_lengths_svg) logger.info('Running fastq_g2p on %s.', self) with open(self.trimmed1_fastq) as fastq1, \ open(self.trimmed2_fastq) as fastq2, \ open(self.g2p_csv, 'w') as g2p_csv, \ open(self.g2p_summary_csv, 'w') as g2p_summary_csv, \ open(self.g2p_unmapped1_fastq, 'w') as g2p_unmapped1, \ open(self.g2p_unmapped2_fastq, 'w') as g2p_unmapped2, \ open(self.g2p_aligned_csv, 'w') as g2p_aligned_csv, \ open(self.merged_contigs_csv, 'w') as merged_contigs_csv: fastq_g2p(pssm=pssm, fastq1=fastq1, fastq2=fastq2, g2p_csv=g2p_csv, g2p_summary_csv=g2p_summary_csv, unmapped1=g2p_unmapped1, unmapped2=g2p_unmapped2, aligned_csv=g2p_aligned_csv, min_count=DEFAULT_MIN_COUNT, min_valid=MIN_VALID, min_valid_percent=MIN_VALID_PERCENT, merged_contigs_csv=merged_contigs_csv) if use_denovo: self.run_denovo(excluded_seeds) else: self.run_mapping(excluded_seeds) logger.info('Running sam2aln on %s.', self) with open(self.remap_csv) as remap_csv, \ open(self.aligned_csv, 'w') as aligned_csv, \ open(self.conseq_ins_csv, 'w') as conseq_ins_csv, \ open(self.failed_csv, 'w') as failed_csv, \ open(self.clipping_csv, 'w') as clipping_csv: sam2aln(remap_csv, aligned_csv, conseq_ins_csv, failed_csv, clipping_csv=clipping_csv) logger.info('Running aln2counts on %s.', self) if use_denovo: contigs_path = self.contigs_csv else: contigs_path = os.devnull with open(self.aligned_csv) as aligned_csv, \ open(self.g2p_aligned_csv) as g2p_aligned_csv, \ open(self.clipping_csv) as clipping_csv, \ open(self.conseq_ins_csv) as conseq_ins_csv, \ open(self.remap_conseq_csv) as remap_conseq_csv, \ open(contigs_path) as contigs_csv, \ open(self.nuc_csv, 'w') as nuc_csv, \ open(self.nuc_detail_csv, 'w') as nuc_detail_csv, \ open(self.amino_csv, 'w') as amino_csv, \ open(self.amino_detail_csv, 'w') as amino_detail_csv, \ open(self.coord_ins_csv, 'w') as coord_ins_csv, \ open(self.conseq_csv, 'w') as conseq_csv, \ open(self.conseq_region_csv, 'w') as conseq_region_csv, \ open(self.failed_align_csv, 'w') as failed_align_csv, \ open(self.coverage_summary_csv, 'w') as coverage_summary_csv, \ open(self.genome_coverage_csv, 'w') as genome_coverage_csv, \ open(self.conseq_all_csv, "w") as conseq_all_csv, \ open(self.minimap_hits_csv, "w") as minimap_hits_csv: if not use_denovo: for f in (amino_detail_csv, nuc_detail_csv): f.close() os.remove(f.name) amino_detail_csv = nuc_detail_csv = None aln2counts(aligned_csv, nuc_csv, amino_csv, coord_ins_csv, conseq_csv, failed_align_csv, coverage_summary_csv=coverage_summary_csv, clipping_csv=clipping_csv, conseq_ins_csv=conseq_ins_csv, g2p_aligned_csv=g2p_aligned_csv, remap_conseq_csv=remap_conseq_csv, conseq_region_csv=conseq_region_csv, amino_detail_csv=amino_detail_csv, nuc_detail_csv=nuc_detail_csv, genome_coverage_csv=genome_coverage_csv, contigs_csv=contigs_csv, conseq_all_csv=conseq_all_csv, minimap_hits_csv=minimap_hits_csv) logger.info('Running coverage_plots on %s.', self) os.makedirs(self.coverage_maps) with open(self.amino_csv) as amino_csv, \ open(self.coverage_scores_csv, 'w') as coverage_scores_csv: coverage_plot(amino_csv, coverage_scores_csv, coverage_maps_path=self.coverage_maps, coverage_maps_prefix=self.name, excluded_projects=excluded_projects) with open(self.genome_coverage_csv) as genome_coverage_csv, \ open(self.minimap_hits_csv) as minimap_hits_csv: if not use_denovo: minimap_hits_csv = None plot_genome_coverage(genome_coverage_csv, minimap_hits_csv, self.genome_coverage_svg) logger.info('Running cascade_report on %s.', self) with open(self.g2p_summary_csv) as g2p_summary_csv, \ open(self.remap_counts_csv) as remap_counts_csv, \ open(self.aligned_csv) as aligned_csv, \ open(self.cascade_csv, 'w') as cascade_csv: cascade_report = CascadeReport(cascade_csv) cascade_report.g2p_summary_csv = g2p_summary_csv cascade_report.remap_counts_csv = remap_counts_csv cascade_report.aligned_csv = aligned_csv cascade_report.generate() logger.info('Finished sample %s.', self)
def process(self, pssm, excluded_seeds=(), excluded_projects=(), force_gzip=False): """ Process a single sample. :param pssm: the pssm library for running G2P analysis :param excluded_seeds: seeds to exclude from mapping :param excluded_projects: project codes to exclude from reporting :param bool force_gzip: treat FASTQ files as gzipped, even when they don't end in .gz """ logger.info('Processing %s (%r).', self, self.fastq1) scratch_path = os.path.dirname(self.prelim_csv) os.mkdir(scratch_path) use_gzip = force_gzip or self.fastq1.endswith('.gz') with open(self.read_summary_csv, 'w') as read_summary: trim((self.fastq1, self.fastq2), self.bad_cycles_csv, (self.trimmed1_fastq, self.trimmed2_fastq), summary_file=read_summary, use_gzip=use_gzip) logger.info('Running fastq_g2p on %s.', self) with open(self.trimmed1_fastq) as fastq1, \ open(self.trimmed2_fastq) as fastq2, \ open(self.g2p_csv, 'w') as g2p_csv, \ open(self.g2p_summary_csv, 'w') as g2p_summary_csv, \ open(self.g2p_unmapped1_fastq, 'w') as g2p_unmapped1, \ open(self.g2p_unmapped2_fastq, 'w') as g2p_unmapped2, \ open(self.g2p_aligned_csv, 'w') as g2p_aligned_csv: fastq_g2p(pssm=pssm, fastq1=fastq1, fastq2=fastq2, g2p_csv=g2p_csv, g2p_summary_csv=g2p_summary_csv, unmapped1=g2p_unmapped1, unmapped2=g2p_unmapped2, aligned_csv=g2p_aligned_csv, min_count=DEFAULT_MIN_COUNT, min_valid=MIN_VALID, min_valid_percent=MIN_VALID_PERCENT) logger.info('Running prelim_map on %s.', self) with open(self.prelim_csv, 'w') as prelim_csv: prelim_map(self.g2p_unmapped1_fastq, self.g2p_unmapped2_fastq, prelim_csv, work_path=scratch_path, excluded_seeds=excluded_seeds) logger.info('Running remap on %s.', self) if self.debug_remap: debug_file_prefix = os.path.join(scratch_path, 'debug') else: debug_file_prefix = None with open(self.prelim_csv) as prelim_csv, \ open(self.remap_csv, 'w') as remap_csv, \ open(self.remap_counts_csv, 'w') as counts_csv, \ open(self.remap_conseq_csv, 'w') as conseq_csv, \ open(self.unmapped1_fastq, 'w') as unmapped1, \ open(self.unmapped2_fastq, 'w') as unmapped2: remap(self.g2p_unmapped1_fastq, self.g2p_unmapped2_fastq, prelim_csv, remap_csv, counts_csv, conseq_csv, unmapped1, unmapped2, scratch_path, debug_file_prefix=debug_file_prefix) logger.info('Running sam2aln on %s.', self) with open(self.remap_csv) as remap_csv, \ open(self.aligned_csv, 'w') as aligned_csv, \ open(self.conseq_ins_csv, 'w') as conseq_ins_csv, \ open(self.failed_csv, 'w') as failed_csv, \ open(self.clipping_csv, 'w') as clipping_csv: sam2aln(remap_csv, aligned_csv, conseq_ins_csv, failed_csv, clipping_csv=clipping_csv) logger.info('Running aln2counts on %s.', self) with open(self.aligned_csv) as aligned_csv, \ open(self.g2p_aligned_csv) as g2p_aligned_csv, \ open(self.clipping_csv) as clipping_csv, \ open(self.conseq_ins_csv) as conseq_ins_csv, \ open(self.remap_conseq_csv) as remap_conseq_csv, \ open(self.nuc_csv, 'w') as nuc_csv, \ open(self.amino_csv, 'w') as amino_csv, \ open(self.coord_ins_csv, 'w') as coord_ins_csv, \ open(self.conseq_csv, 'w') as conseq_csv, \ open(self.conseq_region_csv, 'w') as conseq_region_csv, \ open(self.failed_align_csv, 'w') as failed_align_csv, \ open(self.coverage_summary_csv, 'w') as coverage_summary_csv: aln2counts(aligned_csv, nuc_csv, amino_csv, coord_ins_csv, conseq_csv, failed_align_csv, coverage_summary_csv=coverage_summary_csv, clipping_csv=clipping_csv, conseq_ins_csv=conseq_ins_csv, g2p_aligned_csv=g2p_aligned_csv, remap_conseq_csv=remap_conseq_csv, conseq_region_csv=conseq_region_csv) logger.info('Running coverage_plots on %s.', self) os.makedirs(self.coverage_maps) with open(self.amino_csv) as amino_csv, \ open(self.coverage_scores_csv, 'w') as coverage_scores_csv: coverage_plot(amino_csv, coverage_scores_csv, coverage_maps_path=self.coverage_maps, coverage_maps_prefix=self.name, excluded_projects=excluded_projects) logger.info('Running cascade_report on %s.', self) with open(self.g2p_summary_csv) as g2p_summary_csv, \ open(self.remap_counts_csv) as remap_counts_csv, \ open(self.aligned_csv) as aligned_csv, \ open(self.cascade_csv, 'w') as cascade_csv: cascade_report = CascadeReport(cascade_csv) cascade_report.g2p_summary_csv = g2p_summary_csv cascade_report.remap_counts_csv = remap_counts_csv cascade_report.aligned_csv = aligned_csv cascade_report.generate() logger.info('Finished sample %s.', self)
def process_sample(sample_index, run_info, args, pssm): """ Process a single sample. :param sample_index: which sample to process from the session JSON :param run_info: run parameters loaded from the session JSON :param args: the command-line arguments :param pssm: the pssm library for running G2P analysis """ scratch_path = os.path.join(args.data_path, 'scratch') sample_info = run_info.samples[sample_index] sample_id = sample_info['Id'] sample_name = sample_info['Name'] sample_dir = os.path.join(args.data_path, 'input', 'samples', sample_id, 'Data', 'Intensities', 'BaseCalls') if not os.path.exists(sample_dir): sample_dir = os.path.join(args.data_path, 'input', 'samples', sample_id) sample_path = None for root, _dirs, files in os.walk(sample_dir): sample_paths = fnmatch.filter(files, '*_R1_*') if sample_paths: sample_path = os.path.join(root, sample_paths[0]) break if sample_path is None: raise RuntimeError( 'No R1 file found for sample id {}.'.format(sample_id)) sample_path2 = sample_path.replace('_R1_', '_R2_') if not os.path.exists(sample_path2): raise RuntimeError('R2 file missing for sample id {}: {!r}.'.format( sample_id, sample_path2)) logger.info('Processing sample %s (%d of %d): %s (%s).', sample_id, sample_index + 1, len(run_info.samples), sample_name, sample_path) sample_qc_path = os.path.join(args.qc_path, sample_name) makedirs(sample_qc_path) sample_scratch_path = os.path.join(scratch_path, sample_name) makedirs(sample_scratch_path) bad_cycles_path = os.path.join(scratch_path, 'bad_cycles.csv') trimmed_path1 = os.path.join(sample_scratch_path, 'trimmed1.fastq') read_summary_path = os.path.join(sample_scratch_path, 'read_summary.csv') trimmed_path2 = os.path.join(sample_scratch_path, 'trimmed2.fastq') with open(read_summary_path, 'w') as read_summary: trim((sample_path, sample_path2), bad_cycles_path, (trimmed_path1, trimmed_path2), summary_file=read_summary, use_gzip=sample_path.endswith('.gz')) logger.info('Running fastq_g2p (%d of %d).', sample_index + 1, len(run_info.samples)) g2p_unmapped1_path = os.path.join(sample_scratch_path, 'g2p_unmapped1.fastq') g2p_unmapped2_path = os.path.join(sample_scratch_path, 'g2p_unmapped2.fastq') with open(os.path.join(sample_scratch_path, 'trimmed1.fastq'), 'r') as fastq1, \ open(os.path.join(sample_scratch_path, 'trimmed2.fastq'), 'r') as fastq2, \ open(os.path.join(sample_scratch_path, 'g2p.csv'), 'w') as g2p_csv, \ open(os.path.join(sample_scratch_path, 'g2p_summary.csv'), 'w') as g2p_summary_csv, \ open(g2p_unmapped1_path, 'w') as g2p_unmapped1, \ open(g2p_unmapped2_path, 'w') as g2p_unmapped2, \ open(os.path.join(sample_scratch_path, 'g2p_aligned.csv'), 'w') as g2p_aligned_csv: fastq_g2p(pssm=pssm, fastq1=fastq1, fastq2=fastq2, g2p_csv=g2p_csv, g2p_summary_csv=g2p_summary_csv, unmapped1=g2p_unmapped1, unmapped2=g2p_unmapped2, aligned_csv=g2p_aligned_csv, min_count=DEFAULT_MIN_COUNT, min_valid=MIN_VALID, min_valid_percent=MIN_VALID_PERCENT) logger.info('Running prelim_map (%d of %d).', sample_index + 1, len(run_info.samples)) excluded_seeds = [] if args.all_projects else EXCLUDED_SEEDS with open(os.path.join(sample_scratch_path, 'prelim.csv'), 'w') as prelim_csv: prelim_map(g2p_unmapped1_path, g2p_unmapped2_path, prelim_csv, work_path=sample_scratch_path, excluded_seeds=excluded_seeds) logger.info('Running remap (%d of %d).', sample_index + 1, len(run_info.samples)) if args.debug_remap: debug_file_prefix = os.path.join(sample_scratch_path, 'debug') else: debug_file_prefix = None with open(os.path.join(sample_scratch_path, 'prelim.csv'), 'r') as prelim_csv, \ open(os.path.join(sample_scratch_path, 'remap.csv'), 'w') as remap_csv, \ open(os.path.join(sample_scratch_path, 'remap_counts.csv'), 'w') as counts_csv, \ open(os.path.join(sample_scratch_path, 'remap_conseq.csv'), 'w') as conseq_csv, \ open(os.path.join(sample_qc_path, 'unmapped1.fastq'), 'w') as unmapped1, \ open(os.path.join(sample_qc_path, 'unmapped2.fastq'), 'w') as unmapped2: remap(g2p_unmapped1_path, g2p_unmapped2_path, prelim_csv, remap_csv, counts_csv, conseq_csv, unmapped1, unmapped2, sample_scratch_path, debug_file_prefix=debug_file_prefix) logger.info('Running sam2aln (%d of %d).', sample_index + 1, len(run_info.samples)) with open(os.path.join(sample_scratch_path, 'remap.csv'), 'r') as remap_csv, \ open(os.path.join(sample_scratch_path, 'aligned.csv'), 'w') as aligned_csv, \ open(os.path.join(sample_scratch_path, 'conseq_ins.csv'), 'w') as conseq_ins_csv, \ open(os.path.join(sample_scratch_path, 'failed_read.csv'), 'w') as failed_csv, \ open(os.path.join(sample_scratch_path, 'clipping.csv'), 'w') as clipping_csv: sam2aln(remap_csv, aligned_csv, conseq_ins_csv, failed_csv, clipping_csv=clipping_csv) logger.info('Running aln2counts (%d of %d).', sample_index + 1, len(run_info.samples)) with open(os.path.join(sample_scratch_path, 'aligned.csv'), 'r') as aligned_csv, \ open(os.path.join(sample_scratch_path, 'g2p_aligned.csv'), 'r') as g2p_aligned_csv, \ open(os.path.join(sample_scratch_path, 'clipping.csv'), 'r') as clipping_csv, \ open(os.path.join(sample_scratch_path, 'conseq_ins.csv'), 'r') as conseq_ins_csv, \ open(os.path.join(sample_scratch_path, 'remap_conseq.csv'), 'r') as remap_conseq_csv, \ open(os.path.join(sample_scratch_path, 'nuc.csv'), 'w') as nuc_csv, \ open(os.path.join(sample_scratch_path, 'amino.csv'), 'w') as amino_csv, \ open(os.path.join(sample_scratch_path, 'coord_ins.csv'), 'w') as coord_ins_csv, \ open(os.path.join(sample_scratch_path, 'conseq.csv'), 'w') as conseq_csv, \ open(os.path.join(sample_scratch_path, 'failed_align.csv'), 'w') as failed_align_csv, \ open(os.path.join(sample_scratch_path, 'coverage_summary.csv'), 'w') as coverage_summary_csv: aln2counts(aligned_csv, nuc_csv, amino_csv, coord_ins_csv, conseq_csv, failed_align_csv, coverage_summary_csv=coverage_summary_csv, clipping_csv=clipping_csv, conseq_ins_csv=conseq_ins_csv, g2p_aligned_csv=g2p_aligned_csv, remap_conseq_csv=remap_conseq_csv) logger.info('Running coverage_plots (%d of %d).', sample_index + 1, len(run_info.samples)) coverage_maps_path = os.path.join(args.qc_path, 'coverage_maps') makedirs(coverage_maps_path) excluded_projects = [] if args.all_projects else EXCLUDED_PROJECTS with open(os.path.join(sample_scratch_path, 'amino.csv'), 'r') as amino_csv, \ open(os.path.join(sample_scratch_path, 'coverage_scores.csv'), 'w') as coverage_scores_csv: coverage_plot(amino_csv, coverage_scores_csv, coverage_maps_path=coverage_maps_path, coverage_maps_prefix=sample_name, excluded_projects=excluded_projects) logger.info('Running hivdb (%d of %d).', sample_index + 1, len(run_info.samples)) with open(os.path.join(sample_scratch_path, 'amino.csv')) as amino_csv, \ open(os.path.join(sample_scratch_path, 'coverage_scores.csv')) as coverage_scores_csv, \ open(os.path.join(sample_scratch_path, 'resistance.csv'), 'w') as resistance_csv, \ open(os.path.join(sample_scratch_path, 'mutations.csv'), 'w') as mutations_csv: hivdb(amino_csv, coverage_scores_csv, resistance_csv, mutations_csv, run_info.reports) logger.info('Running resistance report (%d of %d).', sample_index + 1, len(run_info.samples)) source_path = os.path.dirname(__file__) version_filename = os.path.join(source_path, 'version.txt') if not os.path.exists(version_filename): git_version = 'v0-dev' else: with open(version_filename) as version_file: git_version = version_file.read().strip() reports_path = os.path.join(args.qc_path, 'resistance_reports') makedirs(reports_path) report_filename = os.path.join(reports_path, sample_name + '_resistance.pdf') with open(os.path.join(sample_scratch_path, 'resistance.csv')) as resistance_csv, \ open(os.path.join(sample_scratch_path, 'mutations.csv')) as mutations_csv, \ open(report_filename, 'wb') as report_pdf: gen_report(resistance_csv, mutations_csv, report_pdf, sample_name, git_version=git_version) logger.info('Running cascade_report (%d of %d).', sample_index + 1, len(run_info.samples)) with open(os.path.join(sample_scratch_path, 'g2p_summary.csv'), 'r') as g2p_summary_csv, \ open(os.path.join(sample_scratch_path, 'remap_counts.csv'), 'r') as remap_counts_csv, \ open(os.path.join(sample_scratch_path, 'aligned.csv'), 'r') as aligned_csv, \ open(os.path.join(sample_scratch_path, 'cascade.csv'), 'w') as cascade_csv: cascade_report = CascadeReport(cascade_csv) cascade_report.g2p_summary_csv = g2p_summary_csv cascade_report.remap_counts_csv = remap_counts_csv cascade_report.aligned_csv = aligned_csv cascade_report.generate() logger.info('Finished sample (%d of %d).', sample_index + 1, len(run_info.samples))