Exemple #1
0
def cooperative_tradeoff(community, min_growth, fraction, fluxes, pfba):
    """Find the best tradeoff between community and individual growth."""
    with community as com:
        check_modification(community)
        min_growth = _format_min_growth(min_growth, community.species)
        _apply_min_growth(community, min_growth)

        com.objective = 1000.0 * com.variables.community_objective
        min_growth = optimize_with_retry(
            com, message="could not get community growth rate.") / 1000.0

        if not isinstance(fraction, Sized):
            fraction = [fraction]
        else:
            fraction = np.sort(fraction)[::-1]

        # Add needed variables etc.
        regularize_l2_norm(com, 0.0)
        results = []
        for fr in fraction:
            com.variables.community_objective.lb = fr * min_growth
            com.variables.community_objective.ub = min_growth
            sol = solve(community, fluxes=fluxes, pfba=pfba)
            if sol.status != OPTIMAL:
                sol = crossover(com, sol, fluxes=fluxes, pfba=pfba)
            results.append((fr, sol))
        if len(results) == 1:
            return results[0][1]
        return pd.DataFrame.from_records(results,
                                         columns=["tradeoff", "solution"])
Exemple #2
0
def cooperative_tradeoff(community, min_growth, fraction, fluxes, pfba):
    """Find the best tradeoff between community and individual growth."""
    with community as com:
        solver = interface_to_str(community.problem)
        check_modification(community)
        min_growth = _format_min_growth(min_growth, community.taxa)
        _apply_min_growth(community, min_growth)

        com.objective = com.scale * com.variables.community_objective
        min_growth = (optimize_with_retry(
            com, message="could not get community growth rate.") / com.scale)
        if not isinstance(fraction, Sized):
            fraction = [fraction]
        else:
            fraction = np.sort(fraction)[::-1]

        # Add needed variables etc.
        regularize_l2_norm(com, 0.0)
        results = []
        for fr in fraction:
            com.variables.community_objective.lb = fr * min_growth
            com.variables.community_objective.ub = min_growth
            sol = solve(community, fluxes=fluxes, pfba=pfba)
            # OSQP is better with QPs then LPs
            # so it won't get better with the crossover
            if (sol.status != OPTIMAL and solver != "osqp"):
                sol = crossover(com, sol, fluxes=fluxes, pfba=pfba)
            results.append((fr, sol))
        if len(results) == 1:
            return results[0][1]
        return pd.DataFrame.from_records(results,
                                         columns=["tradeoff", "solution"])
Exemple #3
0
def knockout_taxa(
    community, taxa, fraction, method, progress, diag=True
):
    """Knockout a taxon from the community."""
    with community as com:
        check_modification(com)
        min_growth = _format_min_growth(0.0, com.taxa)
        _apply_min_growth(com, min_growth)

        com.objective = com.scale * com.variables.community_objective
        community_min_growth = (
            optimize_with_retry(com, "could not get community growth rate.")
            / com.scale
        )
        regularize_l2_norm(com, fraction * community_min_growth)
        old = com.optimize().members["growth_rate"]
        results = []

        iter = track(taxa, description="Knockouts") if progress else taxa
        for sp in iter:
            with com:
                logger.info("getting growth rates for " "%s knockout." % sp)
                [
                    r.knock_out()
                    for r in com.reactions.query(
                        lambda ri: ri.community_id == sp
                    )
                ]

                sol = optimize_with_fraction(com, fraction)
                new = sol.members["growth_rate"]
                if "change" in method:
                    new = new - old
                if "relative" in method:
                    new /= old
                results.append(new)

        ko = pd.DataFrame(results, index=taxa).drop("medium", 1)
        ko = ko.loc[ko.index.sort_values(), ko.columns.sort_values()]
        if not diag:
            np.fill_diagonal(ko.values, np.NaN)

        return ko
Exemple #4
0
def knockout_species(community,
                     species,
                     fraction,
                     method,
                     progress,
                     diag=True):
    """Knockout a species from the community."""
    with community as com:
        check_modification(com)
        min_growth = _format_min_growth(0.0, com.species)
        _apply_min_growth(com, min_growth)

        com.objective = 1000.0 * com.variables.community_objective
        community_min_growth = (
            optimize_with_retry(com, "could not get community growth rate.") /
            1000.0)
        regularize_l2_norm(com, fraction * community_min_growth)
        old = com.optimize().members["growth_rate"]
        results = []

        if progress:
            species = tqdm(species, unit="knockout(s)")
        for sp in species:
            with com:
                logger.info("getting growth rates for " "%s knockout." % sp)
                [
                    r.knock_out() for r in com.reactions.query(
                        lambda ri: ri.community_id == sp)
                ]

                sol = optimize_with_fraction(com, fraction)
                new = sol.members["growth_rate"]
                if "change" in method:
                    new = new - old
                if "relative" in method:
                    new /= old
                results.append(new)

        ko = pd.DataFrame(results, index=species).drop("medium", 1)
        if not diag:
            np.fill_diagonal(ko.values, np.NaN)

        return ko
Exemple #5
0
def test_retry(community):
    sol = ms.optimize_with_retry(community)
    assert sol == approx(0.874, 0.001)