def _cmd_tune(args): transport_launcher = device_util.DeviceTransportLauncher( {'use_tracker': True}) log_util.config(['autotune', args.model_spec], logging.INFO) model_inst, _ = model.instantiate_from_spec(args.model_spec) tasks, log_file = tune_model(args, transport_launcher, model_inst) analyze(args, model_inst, tasks, log_file, promote=True)
def _cmd_launch_transport(args): log_util.config(['autotune', args.model_spec]) transport_launcher = device_util.DeviceTransportLauncher( {'use_tracker': True}) generate_config = not args.skip_writing_transport_config launch_kw = {'generate_config': generate_config} if generate_config: model_inst, _ = model.instantiate_from_spec(args.model_spec) index_and_task = None if args.task_index is not None: tasks = model_inst.extract_tunable_tasks(model_inst.build_model()) index_and_task = (args.task_index, tasks[args.task_index]) launch_kw[ 'generate_config_func'] = tvm.micro.device.arm.stm32f746xx.generate_config launch_kw['generate_config_kw'] = { 'section_constraints': model_inst.section_constraints(index_and_task) } with transport_launcher.launch(**launch_kw): print('Transport launched. Press Ctrl+C to terminate.') try: while True: time.sleep(10) except KeyboardInterrupt: print('Caught SIGINT; shutting down')
def _cmd_rpc_dev_config(args): log_util.config([], logging.INFO, console_only=True) transport_launcher = device_util.DeviceTransportLauncher( {'use_tracker': True}) model_inst, _ = model.instantiate_from_spec(args.model_spec) index_and_task = None if args.task_index is not None: tasks = model_inst.extract_tunable_tasks(model_inst.build_model()) index_and_task = (args.task_index, tasks[args.task_index]) transport_launcher.generate_rpc_server_configs( tvm.micro.device.arm.stm32f746xx.generate_config, { 'section_constraints': model_inst.section_constraints(index_and_task) }) transport_launcher.generate_openocd_configs() print( f'Wrote OpenOCD and RPC server configs underneath {transport_launcher.work_dirtree_root}' )
def main(): args = parse_args() log_util.config(['eval', '-'.join(args.model_specs)], level=args.log_level) model_inst_setting = collections.OrderedDict() for spec in args.model_specs: assert spec not in model_inst_setting, f'spec {spec} given twice' model_inst_setting[spec] = model.instantiate_from_spec(spec) validate_against = None if args.validate_against: assert args.validate_against not in model_inst_setting, ( f'--validate-against={args.validate_against} also given in model_specs ' 'command-line argument') validate_against = model.instantiate_from_spec(args.validate_against) model_inst_setting[args.validate_against] = validate_against dataset_generator_name = next(iter( model_inst_setting.values()))[0].dataset_generator_name() for spec, (m, _) in model_inst_setting.items(): m.dataset_generator_name() == dataset_generator_name, ( f'expected all models to share the same dataset, but {spec} has ' f'{m.dataset_generator_name()}') dataset_gen = dataset.DatasetGenerator.instantiate( dataset_generator_name, {'shuffle': not validate_against}) util.DEBUG_MODE = args.use_debug_executor samples = dataset_gen.generate(args.num_samples) results = {} with contextlib.ExitStack() as all_models_stack: if args.debug_micro_execution: _LOG.warn( 'NOTE: to debug micro execution, compiled object files will be left in your ' 'temp directory at: %s', contrib_utils.TempDirectory._DEBUG_PARENT_DIR) _LOG.warn( 'This is a limitation of the current microTVM compilation structure' ) all_models_stack.enter_context( contrib_utils.TempDirectory.set_keep_for_debug()) for spec, (model_inst, setting) in model_inst_setting.items(): with contextlib.ExitStack() as model_stack: if args.use_tuned_schedule: if args.use_tuned_schedule == USE_DEFAULT_TUNED_SCHEDULE: tuned_schedule = autotvm_log_util.get_default_log_path( autotvm_log_util.compute_job_name( spec, model_inst)) if not os.path.exists(tuned_schedule): _LOG.warning( 'Tuned schedule for %s not found; proceeding without: %s', spec, tuned_schedule) tuned_schedule = None else: tuned_schedule = args.use_tuned_schedule if tuned_schedule is not None: model_stack.enter_context( autotvm.apply_history_best(tuned_schedule)) compiled = model_inst.build_model() results[spec] = globals()[f'eval_{setting}'](args, model_inst, compiled, samples) if args.validate_against: for i in range(args.num_samples): allclose = {} for model_spec in args.model_specs: allclose[model_spec] = np.allclose( results[model_spec][i]['label'].astype('float32'), results[ args.validate_against][i]['label'].astype('float32')) _LOG.info(f'Sample {i} ---->') rows = [] rows.append([['model_name', 'setting', 'config']] + [x for x in range(10)]) def _add_row(model_spec, values): model_spec_parts = model_spec.split(':', 3) if len(model_spec_parts) == 2: model_spec_parts.append('') rows.append([model_spec_parts] + values) for model_spec in args.model_specs: color = '' if model_spec != args.validate_against: if not allclose[model_spec]: level = logging.ERROR else: level = logging.INFO _add_row(model_spec, list(results[model_spec][i]['label'])) _add_row(args.validate_against, results[args.validate_against][i]['label'].tolist()) spacings = [] for c in range(0, 3): spacing = max(len(r[0][c]) + 1 for r in rows) spacings.append(f'{{0:{spacing}s}}') _LOG.info(''.join( [spacings[c].format(rows[0][0][c]) for c in range(0, 3)] + ['{0:5d}'.format(c) for c in rows[0][1:]])) format_string = f'{{0:{spacing}s}}' for r in rows[1:]: model_spec_parts = ''.join( [spacings[c].format(r[0][c]) for c in range(0, 3)]) color = r[1] result_str = ''.join([' {0:+04d}'.format(y) for y in r[1:]]) _LOG.log(level, '%s%s', model_spec_parts, result_str)
def _cmd_analyze(args): log_util.config([], logging.INFO, console_only=True) model_inst, _ = model.instantiate_from_spec(args.model_spec) tasks = model_inst.extract_tunable_tasks(model_inst.build_model()) analyze(args, model_inst, tasks, args.log_file, promote=args.promote)
def main(): args = parse_args() model_inst, _ = model.instantiate_from_spec(args.model_specs[0]) generate_project(model_inst, args.project_dir)