def webcam_upload(): data = request.get_json() # Preprocess the upload image img_raw = data['data-uri'].encode() image_path = parse_image(img_raw) print(image_path) (categoryPredict, positions) = detect(image_path) print(categoryPredict) if len(categoryPredict) > 0: croppedDectection = [] for i in range(len(categoryPredict)): croppedDectection.append( 'static/images/cropped-dectecion-{}.jpg'.format(i)) croppedObject = cropped.list_object( zip(categoryPredict, croppedDectection)) else: croppedDectection = None objectDetection = 'static/images/object-detection.jpg' os.remove(image_path) return { "crop": croppedDectection, "full": objectDetection, "details": positions }
def video(): if request.method == "POST": print(request) _ = VideoCamera().get_frame(capture=True) categoryPredict = detect('static/images/object-detection.jpg') if len(categoryPredict) > 0: croppedDectection = [] for i in range(len(categoryPredict)): croppedDectection.append( 'images/cropped-dectecion-{}.jpg'.format(i)) croppedObject = cropped.list_object( zip(categoryPredict, croppedDectection)) else: croppedObject = None return render_template('home.html', f='../static/images/object-detection.jpg', c=croppedObject) return render_template('home.html', f=None, c=[])
def still(): if request.method == "POST": f = request.files["uploadfile"] _, ext = os.path.splitext(f.filename) if os.path.exists(os.path.join(ptuf, "input" + ext)): os.remove(os.path.join(ptuf, "input" + ext)) f.save(os.path.join(ptuf, "input" + ext)) categoryPredict = detect('static\images\input' + ext) if len(categoryPredict) > 0: croppedDectection = [] for i in range(len(categoryPredict)): croppedDectection.append( 'images/cropped-dectecion-{}{}'.format(i, ext)) croppedObject = cropped.list_object( zip(categoryPredict, croppedDectection)) else: croppedObject = None objectDetection = 'images/object-detection' + ext return render_template('still.html', f=objectDetection, c=croppedObject) df = pd.read_csv('static/product-data/Sofa bed.csv') for category in ['Chair', 'Table', 'Lamp', 'Shelf']: df.append(pd.read_csv('static/product-data/{}.csv'.format(category))) randomProducts = products.random_products(df, 10) return render_template('still.html', r=randomProducts)
def still(): if request.method == "POST": f = request.files["uploadfile"] _, ext = os.path.splitext(f.filename) if os.path.exists(os.path.join(ptuf, "input" + ext)): os.remove(os.path.join(ptuf, "input" + ext)) f.save(os.path.join(ptuf, "input" + ext)) categoryPredict = detect('static/images/input.jpg') if len(categoryPredict) > 0: croppedDectection = [] for i in range(len(categoryPredict)): croppedDectection.append( 'images/cropped-dectecion-{}.jpg'.format(i)) croppedObject = cropped.list_object( zip(categoryPredict, croppedDectection)) else: croppedObject = None objectDetection = 'images/object-detection.jpg' return render_template('still.html', f=objectDetection, c=croppedObject) df = pd.read_csv('static/product-data/top.csv') for category in ['dress', 'shorts', 'skirt', 'trousers']: df.append(pd.read_csv('static/product-data/{}.csv'.format(category))) randomProducts = products.random_products(df, 10) return render_template('still.html', r=randomProducts)