Exemple #1
0
 def play_midi(self, filename, track=1, transpose=6):
     midi = MidiFile(filename)
     tune = midi.read_track(track)
     self.play_tune(midi.tempo,
                    tune,
                    transpose=transpose,
                    name=filename)
 def test_03_read_track(self):
     m = MidiFile(self.sample_file)
     notes = m.read_track(1)
     for n, expected in zip(notes[:4], (('r', 0.4343891402714933),
                                        ('c2', 1.116279069767441),
                                        ('r', 48.00000000000171),
                                        ('f1', 1.499999999999998))):
         self.assertEqual(n[0], expected[0])
         self.assertTrue(isclose(n[1], n[1]))
Exemple #3
0
 def __init__(self, infile):
     self.my_tracks = []  #read from file
     self.my_midiMap = [] # matches MidiSndObj.note_event() with NoteEvents  
     self.next_time = 0.0
     self.tempo = 120.0     
     self.tick_counter = 0
     self.each_time = (60.0 / self.tempo) / 96.0
     self.m = MidiFile()
     self.m.open(infile)
     self.m.read()
     self.m.close()
Exemple #4
0
class ViziMidiFile(object):
    def AddNote(self, e):
        print e
        
    def __init__(self, infile):
        self.my_tracks = []  #read from file
        self.my_midiMap = [] # matches MidiSndObj.note_event() with NoteEvents  
        self.next_time = 0.0
        self.tempo = 120.0     
        self.tick_counter = 0
        self.each_time = (60.0 / self.tempo) / 96.0
        self.m = MidiFile()
        self.m.open(infile)
        self.m.read()
        self.m.close()
            
    def __repr__(self):
        return `self.__dict__`
    
    def Print(self):
        print self.m

    def Restart(self, restart_tick = 0):
        for my_track in self.my_tracks:
            my_track.Restart(restart_tick)
        self.tick_counter = restart_tick
        self.next_time = restart_tick * self.each_time
        
    def DoProcess(self, this_time): # increments the tick counter when the time is right
        if self.next_time >= this_time:
            return True
        else:
            ret_value = 0
            self.next_time += self.each_time
            self.tick_counter += 1
            for this_track in self.my_tracks:
                ret_value += this_track.DoProcess(self.tick_counter)
            return ret_value
 def test_02_init(self):
     m = MidiFile(self.sample_file)
 def test_01_init_no_file(self):
     with self.assertRaises(OSError):
         m = MidiFile('nonexist')
    # Ick, ick, ick. Use a real timer
    if trackPosition < len(masterTrack):
        tickCount = masterTrack[trackPosition].delta * 300


if __name__ == "__main__":

    logging.basicConfig(level=logging.ERROR,
                        format='%(asctime)s %(levelname)s: %(message)s',
                        datefmt='%Y-%m-%d %H:%M:%S')

    masterTrack = None
    if len(sys.argv) > 1:
        fname = sys.argv[1]
        if fname.endswith(".mid"):
            (time, tracks) = MidiFile.parseFile(fname)
        else:
            tracks = MusicParser.processMusic(sys.argv[1])

        masterTrack = MidiTools.mergeTracks(tracks)

    tickCount = 0
    trackPosition = 0

    # MidiTools.printTrack(masterTrack)

    pygame.init()
    pygame.midi.init()

    # MIDI keyboard
    inp = None
Exemple #8
0
def preprocess(filename, timidity, latency, truncate, pad=1, get_raw=False):
    """
    Preprocess an audio file ands its MIDI counterpart. Computes transforms and labels.
    :param filename: audio filename
    :param timidity: set to True if the files was rendered with timidity
    :param latency: in seconds
    :param truncate: in seconds (0 for no truncation)
    :param pad: in seconds, will be added at the start and end before spectral transforms
    :param get_raw: set to True to return raw computed spectrograms (e.g. for visualization)
    :return:
    """
    filename_midi = filename.rsplit('.')[0] + '.mid'

    dname = filename.replace('/', '_').replace('\\', '_')

    # Load files
    ipad = int(pad * 44100)
    audio_pad = (ipad, ipad
                 )  # add one blank second at the beginning and at the end
    if truncate > 0:
        audio = AudioFile(filename,
                          truncate=int(truncate * 44100),
                          pad=audio_pad)
    else:
        audio = AudioFile(filename, pad=audio_pad)
    mid = MidiFile(filename_midi)

    step = 0.02  # seconds
    latency = int(round(latency / step, 0))

    # Compute spectrograms
    spectrograms = ComputeSpectrograms(audio, step=step)

    # Compute filtered spectrograms
    melgrams = ComputeMelLayers(spectrograms, step, audio.Fs, latency)

    # Build the input tensor
    cnn_window = 15
    tensor_mel = BuildTensor(melgrams[:, 2], cnn_window)

    # Compute CQT
    FreqAxisLog, time, cqgram = ComputeCqt(audio,
                                           200.,
                                           4000.,
                                           step,
                                           latency,
                                           r=3)
    tensor_cqt = BuildTensor([
        cqgram,
    ], cnn_window)

    # Global data length
    max_len = min(tensor_mel.shape[0], tensor_cqt.shape[0])

    # Compute output labels
    notes = mid.getNotes(timidity)
    notes_onset = np.array(notes)[:, 0]  # get only the note timing
    notes_value = np.array(notes, dtype=np.int)[:, 1]  # get only the key value

    onset_labels = np.zeros(max_len)
    onset_caracs = np.zeros((max_len, 5))
    onset_caracs[:, 2] = np.arange(max_len)

    note_low = 21  # lowest midi note on a keyboard
    note_high = 108  # highest midi note on a keyboard

    notes_labels = np.zeros((max_len, note_high - note_low + 1))
    notes_caracs = np.zeros((max_len, note_high - note_low + 1))

    for i in range(len(notes_onset)):
        t_win = int(np.floor(
            (notes_onset[i] + audio_pad[0] / audio.Fs) / step))
        if t_win >= len(onset_labels):
            break
        if t_win >= 0:
            onset_labels[t_win] = 1
            onset_caracs[t_win][0] += 1  # nb_notes
            onset_caracs[t_win][1] = max(onset_caracs[t_win][1],
                                         notes[i][2])  # max volume
            if t_win + 1 < len(onset_labels):
                onset_caracs[t_win + 1:, 2] -= onset_caracs[t_win + 1][
                    2]  # nb of blank windows since the last onset

            n = notes_value[i] - note_low
            notes_labels[t_win][n] = 1
            notes_caracs[t_win][n] = notes[i][2]  # volume

    counter = 0
    for i in range(len(onset_labels) - 1, -1, -1):
        onset_caracs[i][3] = counter
        if onset_labels[i] == 1:
            counter = 0
        else:
            counter += 1
    onset_caracs[:, 4] = np.minimum(onset_caracs[:, 2], onset_caracs[:, 3])

    # Extract useful CQT
    select = [i for i in range(max_len) if onset_labels[i] > 0]
    tensor_cqt_select = np.take(tensor_cqt, select, axis=0)
    notes_labels_select = np.take(notes_labels, select, axis=0)
    notes_caracs_select = np.take(notes_caracs, select, axis=0)

    if not get_raw:
        return (tensor_mel[:max_len, ...], tensor_cqt_select, onset_labels,
                onset_caracs, notes_labels_select, notes_caracs_select, dname)
    else:
        return (melgrams, tensor_mel, onset_labels, cqgram, tensor_cqt, time,
                FreqAxisLog, max_len, step)