val = exp_time_data[experiment][data_type] if val != None: new_data_type = 0 if val <= 30: all_adjusted_val = range(start, end_1, interval)#int(val)*2 + 1, interval) else: all_adjusted_val = range(start, end_2, 10)#int(val)*2 + 1, 10) all_obj_val = [] for i in all_adjusted_val: exp_time_data[experiment][data_type] = i print '***********************************' print 'Experiment %s, Data Type %s, Value %s'%(experiment, data_type, i) [obj_val, status] = solve_milp(p, mm_lambda_1, mm_lambda_2, exp_time_data, experiments) if status == 1: all_obj_val.append(obj_val) else: all_obj_val.append(0.0) all_obj_val_per_exp.append(all_obj_val) all_adj_val_per_exp.append(all_adjusted_val) prev_exp = experiment prev_val = val else: all_obj_val_per_exp.append(None) all_adj_val_per_exp.append(None) all_obj_val_per_data_type.append(all_obj_val_per_exp)
all_obj_val_per_stu = [] for student in range(4): p = p_reset p_current = p[student] # all_p_adjusted = linspace(0, p_current + dev_range, no_pnts) all_p_adjusted = range( 0, p_current + increase, 10) #DO NOT go under 2 for last value, program crashes?? all_p_adjust_per_stu.append(all_p_adjusted) all_obj_val = [] for n, i in enumerate(all_p_adjusted): p[student] = i print '***********************************' print 'Student %s Time Limit %s' % (student + 1, i) [obj_val, status] = solve_milp(p, mm_lambda_1, mm_lambda_2) if status == 1: all_obj_val.append(obj_val) else: all_obj_val.append(0.0) all_obj_val_per_stu.append(all_obj_val) # In[9]: for student in range(4): plot(all_p_adjust_per_stu[student], all_obj_val_per_stu[student], '.', label='Student %s' % (student + 1))
#all_obj_val = zeros([size(p), no_pnts]) all_p_adjust_per_stu = [] all_obj_val_per_stu = [] for student in range(4): p = p_reset p_current = p[student] # all_p_adjusted = linspace(0, p_current + dev_range, no_pnts) all_p_adjusted = range(0, p_current + increase, 10) #DO NOT go under 2 for last value, program crashes?? all_p_adjust_per_stu.append(all_p_adjusted) all_obj_val = [] for n, i in enumerate(all_p_adjusted): p[student] = i print '***********************************' print 'Student %s Time Limit %s'%(student + 1, i) [obj_val, status] = solve_milp(p, mm_lambda_1, mm_lambda_2) if status == 1: all_obj_val.append(obj_val) else: all_obj_val.append(0.0) all_obj_val_per_stu.append(all_obj_val) # In[9]: for student in range(4): plot(all_p_adjust_per_stu[student], all_obj_val_per_stu[student], '.', label='Student %s'%(student + 1)) legend(loc='lower right')