class NPCMind(ai.Mind): """Mind class for most mobile entities in the game. An NPCMind object is associated with all NPC and similar entities on a game server. It handles perception data from the world, tracks what the NPC knows about, and handles its goals. The data is organized into three key data structures: self.map is handled by the underlying C++ code, and contains a copy of all the entities in the world that this NPC is currently able to perceive. self.knowledge contains data triples which define relations between entities. self.goals and self.trigger_goals contain trees of goals which represent current and potential activities that NPC might engage in. self.goals are goals which are checked each tick, self.trigger_goals are goals which are activated by an event.""" ########## Initialization def __init__(self, cppthing): # FIXME: this shouldn't be needed self.mind = cppthing print('init') self.knowledge = Knowledge() self.mem = Memory(map=self.map) self.things = {} self.pending_things = [] self._reverse_knowledge() self.goals = [] self.money_transfers = [] self.transfers = [] self.trigger_goals = {} self.jitter = random.uniform(-0.1, 0.1) self.message_queue = None self.goal_id_counter = 0 self.relation_rules = [] self.entities = {} # Fill up any existing entities existing_entities = self.map.get_all() for entity in existing_entities: self.entities[entity.id] = entity self.map.add_hook_set("add_map") self.map.update_hook_set("update_map") self.map.delete_hook_set("delete_map") self.add_property_callback('_goals', 'goals_updated') self.add_property_callback('_knowledge', 'knowledge_updated') self.add_property_callback('_relations', 'relations_updated') # Check if there's an "origin" location, if not add one. if not self.get_knowledge("location", "origin"): # TODO: store in server print('Adding origin location.') self.add_knowledge("location", "origin", self.entity.location.copy()) def goals_updated(self, entity): print('Goals updated.') # For now just clear and recreate all goals when _goals changes. We would probably rather only recreate those that have changed though. goals = entity.props._goals # First clear all goals while len(self.goals): self.remove_goal(self.goals[0]) if goals: for goal_element in goals: goal = goal_create(goal_element) self.insert_goal(goal) def knowledge_updated(self, entity): print('Knowledge updated.') if entity.has_prop_map('_knowledge'): knowledge = entity.get_prop_map('_knowledge') for key, knowledge_element in knowledge.items(): (predicate, subject) = key.split(':') object = knowledge_element if predicate == 'location': # If it's just a string it's a reference to an entity id (with zero position). if isinstance(object, str): entity_id_string = object # A prefix of "$eid:" denotes an entity id; it should be stripped first. if entity_id_string.startswith("$eid:"): entity_id_string = entity_id_string[5:] where = self.map.get_add(entity_id_string) object = Location(where) else: if len(object) == 3: loc = self.entity.location.copy() loc.pos = Vector3D(object) object = loc elif len(object) == 4: entity_id_string = object[0] # A prefix of "$eid:" denotes an entity id; it should be stripped first. if entity_id_string.startswith("$eid:"): entity_id_string = entity_id_string[5:] where = self.map.get_add(entity_id_string) object = Location(where, Vector3D(object[:3])) self.add_knowledge(predicate, subject, object) def relations_updated(self, entity): print('Relations updated.') self.relation_rules.clear() if entity.has_prop_list('_relations'): relations = entity.get_prop_list('_relations') for relation_element in relations: if "filter" in relation_element: rule = {"filter": entity_filter.Filter(relation_element.filter)} if "disposition" in relation_element: rule["disposition"] = relation_element.disposition else: rule["disposition"] = 0 if "threat" in relation_element: rule["threat"] = relation_element.threat else: rule["threat"] = 0 self.relation_rules.append(rule) # update relations for existing entities for (_, entity) in self.entities.items(): self.update_relation_for_entity(entity) def find_op_method(self, op_id, prefix="", undefined_op_method=None): """find right operation to invoke""" if not undefined_op_method: undefined_op_method = self.undefined_op_method return get_dict_func(self, prefix + op_id + "_operation", undefined_op_method) def undefined_op_method(self, op): """this operation is used when no other matching operation is found""" pass def get_op_name_and_sub(self, op): event_name = op.id sub_op = op # I am not quite sure why this is while, as it's only over true # for one iteration. while len(sub_op) and sub_op[0].get_name() == "op": sub_op = sub_op[0] event_name = event_name + "_" + sub_op.id return event_name, sub_op def is_talk_op_addressed_to_me_or_none(self, op): """Checks whether a Talk op is addressed either to none or to me. This is useful is we want to avoid replying to queries addressed to other entities.""" talk_entity = op[0] if hasattr(talk_entity, "address"): addressElement = talk_entity.address if len(addressElement) == 0: return True return self.entity.id in addressElement return True def update_relation_for_entity(self, entity): disposition = 0 threat = 0 for rule in self.relation_rules: if self.match_entity(rule["filter"], entity): if "disposition" in rule: disposition += rule["disposition"] if "threat" in rule: threat += rule["threat"] # print("Disposition %s, threat %s for entity %s" % (disposition, threat, entity.describe_entity())) self.map.add_entity_memory(entity.id, "disposition", disposition) self.map.add_entity_memory(entity.id, "threat", threat) ########## Map updates def add_map(self, obj): """Hook called by underlying map code when an entity is added.""" # print "Map add",obj print('See entity ' + str(obj)) self.entities[obj.id] = obj self.update_relation_for_entity(obj) def update_map(self, obj): """Hook called by underlying map code when an entity is updated. Fix ownership category for objects owned temporary under 'Foo' type.""" # print "Map update",obj foo_lst = self.things.get('Foo', []) for foo in foo_lst[:]: # use copy in loop, because it might get modified if foo.id == obj.id: self.remove_thing(foo) self.add_thing(obj) def delete_map(self, obj): """Hook called by underlying map code when an entity is deleted.""" # print "Map delete",obj print("Removing entity %s" % obj.id) self.entities.pop(obj.id) self.remove_thing(obj) ########## Operations def setup_operation(self, op): """called once by world after object has been made send first tick operation to object This method is automatically invoked by the C++ BaseMind code, due to its *_operation name.""" # CHEAT!: add memory, etc... initialization (or some of it to __init__) # Setup a tick operation for thinking think_tick_op = Operation("tick") think_tick_op.set_to(self.id) think_tick_op.set_args([Entity(name="think")]) # Setup a tick operation for moving move_tick_op = Operation("tick") think_tick_op.set_to(self.id) move_tick_op.set_args([Entity(name="move")]) move_tick_op.set_future_seconds(0.2) return Operation("look") + think_tick_op + move_tick_op def tick_operation(self, op): """periodically reassess situation This method is automatically invoked by the C++ BaseMind code, due to its *_operation name. """ args = op.get_args() if len(args) != 0: if args[0].name == "think": # It's a "thinking" op, which is the base of the AI behaviour. # At regular intervals the AI needs to assess its goals; this is done through "thinking" ops. op_tick = Operation("tick") # just copy the args from the previous tick op_tick.set_args(args) op_tick.set_future_seconds(const.basic_tick + self.jitter) op_tick.set_to(self.id) for t in self.pending_things: thing = self.map.get(t) if thing and thing.type[0]: self.add_thing(thing) self.pending_things = [] result = self.think() if self.message_queue: result = self.message_queue + result self.message_queue = None return op_tick + result ########## Sight operations def sight_create_operation(self, op): """Note our ownership of entities we created. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" # BaseMind version overridden! obj = self.map.add(op[0], op.get_seconds()) if op.to == self.id: self.add_thing(obj) def sight_move_operation(self, op): """change position in our local map This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" obj = self.map.update(op[0], op.get_seconds()) if obj.location.parent and obj.location.parent.id == self.entity.id: self.add_thing(obj) if op.to != self.id: self.transfers.append((op.from_, obj.id)) # TODO: remove this, we should do bartering in a different way if obj.type[0] == "coin" and op.from_ != self.id: self.money_transfers.append([op.from_, 1]) return Operation("imaginary", Entity(description="accepts")) def think_get_operation(self, op): """A Think op wrapping a Get op is used to inquire about the status of a mind. It's often sent from authoring clients, as well as the server itself when it wants to persist the thoughts of a mind. A Get op without any args means that the mind should dump all its thoughts. If there are args however, the meaning of what's to return differs depending on the args. * If "goal" is specified, a "think" operation only pertaining to goals is returned. The "goal" arg should be a map, where the keys and values are used to specify exactly what goals to return. An empty map returns all goals. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" args = op.get_args() # If there are no args we should send all of our thoughts if len(args) == 0: return self.commune_all_thoughts(op, None) else: arg_entity = args[0] if hasattr(arg_entity, "goal"): goal_entity = arg_entity.goal return self.commune_goals(op, goal_entity) if hasattr(arg_entity, "path"): return self.commune_path(op) # TODO: allow for finer grained query of specific thoughts def commune_path(self, op): """Sends back information about the path.""" think_op = Operation("think") path = [] my_path = self.path # print("path size: " + str(len(my_path))) for point in my_path: path.append([point.x, point.y, point.z]) think_op.set_args([Entity(path=path, current_path_index=self.current_path_index)]) res = Oplist() res = res + think_op return res def commune_goals(self, op, goal_entity): """Sends back information about goals only.""" think_op = Operation("think") set_op = Operation("set") thoughts = [] # It's important that the order of the goals is retained for goal in self.goals: if hasattr(goal, "str"): goal_string = goal.str else: goal_string = goal.__class__.__name__ thoughts.append(Entity(goal=goal_string, id=goal_string)) set_op.set_args(thoughts) think_op.set_args([set_op]) think_op.set_refno(op.get_serialno()) res = Oplist() res = res + think_op return res def think_look_operation(self, op): """Sends back information about goals. This is mainly to be used for debugging minds. If no arguments are specified all goals will be reported, else a match will be done using 'index'. The information will be sent back as a Think operation wrapping an Info operation. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name. """ think_op = Operation("think") goal_info_op = Operation("info") goal_infos = [] if not op.get_args(): # get all goals for (index, goal) in enumerate(self.goals): goal_infos.append(Entity(index=index, report=goal.report())) else: for arg in op.get_args(): goal = self.goals[arg.index] if goal and goal is not None: goal_infos.append(Entity(index=arg.index, report=goal.report())) goal_info_op.set_args(goal_infos) think_op.set_refno(op.get_serialno()) think_op.set_args([goal_info_op]) res = Oplist() res = res + think_op return res def commune_all_thoughts(self, op, name): """Sends back information on all thoughts. This includes knowledge and goals, as well as known things. The thoughts will be sent back as a "think" operation, wrapping a Set operation, in a manner such that if the same think operation is sent back to the mind all thoughts will be restored. In this way the mind can support server side persistence of its thoughts. A name can optionally be supplied, which will be set on the Set operation. """ think_op = Operation("think") set_op = Operation("set") thoughts = [] for what in sorted(self.knowledge.knowings.keys()): d = self.knowledge.knowings[what] for key in sorted(d): if what != "goal": object_val = d[key] if type(object_val) is Location: # Serialize Location as tuple, with parent if available if object_val.parent is None: location = object_val.position else: location = ("$eid:" + object_val.parent.id, object_val.pos) goal_object = str(location) else: goal_object = str(d[key]) thoughts.append(Entity(predicate=what, subject=str(key), object=goal_object)) if len(self.things) > 0: things = {} for (id, thinglist) in sorted(self.things.items()): idlist = [] for thing in thinglist: idlist.append(thing.id) things[id] = idlist thoughts.append(Entity(things=things)) if len(self.pending_things) > 0: thoughts.append(Entity(pending_things=self.pending_things)) set_op.set_args(thoughts) think_op.set_args([set_op]) if not op.is_default_serialno(): think_op.set_refno(op.get_serialno()) if name: set_op.set_name(name) res = Oplist() res = res + think_op return res ########## Talk operations def admin_sound(self, op): assert (op.from_ == op.to) return op.from_ == self.entity.id def interlinguish_warning(self, op, say, msg): log.debug(1, str(self.entity.id) + " interlinguish_warning: " + str(msg) + \ ": " + str(say[0].lexlink.id[1:]), op) def interlinguish_desire_verb3_buy_verb1_operation(self, op, say): """Handle a sentence of the form 'I would like to buy a ....' Check if we have any of the type of thing the other character is interested in, and whether we know what price to sell at. If so set up the transaction goal, which offers to sell it.""" object = say[1].word thing = self.things.get(object) if thing: price = self.get_knowledge("price", object) if not price: return goal = mind.goals.common.misc_goal.transaction(object, op.to, price) who = self.map.get(op.to) self.goals.insert(0, goal) return Operation("talk", Entity( say=self.thing_name(who) + " one " + object + " will be " + str(price) + " coins")) + self.face(who) def interlinguish_desire_verb3_operation(self, op, say): """Handle a sentence of the form 'I would like to ...'""" object = say[2:] verb = interlinguish.get_verb(object) operation_method = self.find_op_method(verb, "interlinguish_desire_verb3_", self.interlinguish_undefined_operation) res = Oplist() res = res + self.call_interlinguish_triggers(verb, "interlinguish_desire_verb3_", op, object) res = res + operation_method(op, object) return res def interlinguish_be_verb1_operation(self, op, say): """Handle sentences of the form '... is more important that ...' Accept instructions about the priority of goals relative to each based on key verbs associated with those goals.""" if not self.admin_sound(op): return self.interlinguish_warning(op, say, "You are not admin") res = interlinguish.match_importance(say) if res: return self.add_importance(res['sub'].id, '>', res['obj'].id) else: return self.interlinguish_warning(op, say, "Unknown assertion") def interlinguish_know_verb1_operation(self, op, say): """Handle a sentence of the form 'know subject predicate object' Accept admin instruction about knowledge, and store the triple in our knowledge base.""" if not self.admin_sound(op): return self.interlinguish_warning(op, say, "You are not admin") subject = say[1].word predicate = say[2].word object = say[3].word ## print "know:",subject,predicate,object if object[0] == '(': # CHEAT!: remove eval xyz = list(eval(object)) loc = self.entity.location.copy() loc.pos = Vector3D(xyz) self.add_knowledge(predicate, subject, loc) else: self.add_knowledge(predicate, subject, object) def interlinguish_tell_verb1_operation(self, op, say): """Handle a sentence of the form 'Tell (me) ....' Accept queries about what we know. Mostly this is for debugging and for the time being it is useful to answer these queries no matter who hasks.""" # Ignore messages addressed to others if not self.is_talk_op_addressed_to_me_or_none(op): return None # Currently no checking for trus here. # We are being liberal with interpretation of "subject" and "object" subject = say[1].word predicate = say[2].word object = say[3].word k = self.get_knowledge(predicate, object) if k == None: pass # return Operation('talk',Entity(say="I know nothing about the "+predicate+" of "+object)) else: k_type = type(k) if k_type == type(Location()): dist = distance_to(self.entity.location, k) dist.y = 0 distmag = dist.mag() if distmag < 8: k = 'right here' else: # Currently this assumes dist is relative to TLVE k = '%f metres %s' % (distmag, vector_to_compass(dist)) elif k_type != str: k = 'difficult to explain' elif predicate == 'about': return self.face_and_address(op.to, k) return self.face_and_address(op.to, "The " + predicate + " of " + object + " is " + k) def interlinguish_list_verb1_operation(self, op, say): """Handle a sentence of the form 'List (me) ....' Accept queries about what we know. Mostly this is for debugging and for the time being it is useful to answer these queries no matter who asks. Querying for "all knowledge" will list all knowledge. """ # Ignore messages addressed to others if not self.is_talk_op_addressed_to_me_or_none(op): return None # Currently no checking for trus here. # We are being liberal with interpretation of "subject" and "object" subject = say[1].word predicate = say[2].word if predicate == 'all knowledge': res = Oplist() res = res + self.face(self.map.get(op.to)) for attr in dir(self.knowledge.knowings): d = self.knowledge.knowings[attr] for key in d: # print attr + " of "+key+": " +str(d[key]) res = res + self.address(op.to, "The " + attr + " of " + key + " is " + str(d[key])) return res else: d = self.knowledge.get(predicate) if len(d) == 0: return None res = Oplist() res = res + self.face(self.map.get(op.to)) for key in d: res = res + self.address(op.to, "The " + predicate + " of " + key + " is " + str(d[key])) return res def interlinguish_own_verb1_operation(self, op, say): """Handle a sentence of the form ' own ...' Sentences of this form from the admin inform us that we own an entity. This is essential when an entity needs to be used as a tool, or raw material.""" if not self.admin_sound(op): return self.interlinguish_warning(op, say, "You are not admin") ## print self,"own:",say[1].word,say[2].word subject = self.map.get_add(say[1].word) ## print "subject found:",subject object = self.map.get_add(say[2].word) ## print "object found:",object ## if subject.id==self.entity.id: ## foo if subject.id == self.entity.id: self.add_thing(object) def interlinguish_undefined_operation(self, op, say): # CHEAT!: any way to handle these? log.debug(2, str(self.entity.id) + " interlinguish_undefined_operation:", op) log.debug(2, str(say)) ########## Sound operations def sound_talk_operation(self, op): """Handle the sound of a talk operation from another character. The spoken sentence comes in as a sentence string, which is converted into a structure representation by the interlinguish code. Embedded in the structure is the interlinguish string which is then used to call methods and activate triggers, such as dynamic goals.""" talk_entity = op[0] say = interlinguish.convert_english_to_interlinguish(self, talk_entity) if say: verb = interlinguish.get_verb(say) operation_method = self.find_op_method(verb, "interlinguish_", self.interlinguish_undefined_operation) res = self.call_interlinguish_triggers(verb, "interlinguish_", op, say) res2 = operation_method(op, say) if res: res += res2 else: res = res2 return res ########## Other operations def call_interlinguish_triggers(self, verb, prefix, op, say): """Call trigger goals that have registered a trigger string that matches the current interlinguish string. Given an interlinguish verb string, and a prefix, find any trigger goals that should be activated by the combined trigger string, and activate them.""" # FIXME Don't need this call to get_op_name_and_sub, as we don't use # the result. null_name, sub_op = self.get_op_name_and_sub(op) event_name = prefix + verb reply = Oplist() for goal in self.trigger_goals.get(event_name, []): reply += goal.event(self, op, say) return reply def call_triggers_operation(self, op): event_name, sub_op = self.get_op_name_and_sub(op) reply = Oplist() for goal in self.trigger_goals.get(event_name, []): reply += goal.event(self, op, sub_op) return reply ########## Generic knowledge def _reverse_knowledge(self): """normally location: tell where items reside reverse location tells what resides in this spot""" self.reverse_knowledge = Knowledge() if "location" in self.knowledge.knowings: for (k, v) in list(self.knowledge.knowings['location'].items()): self.reverse_knowledge.add("location", v, k) def get_reverse_knowledge(self, what, key): """get certain reverse knowledge value what: what kind of knowledge (location only so far)""" return self.reverse_knowledge.get(what, key) def get_knowledge(self, what, key): """get certain knowledge value what: what kind of knowledge (see Knowledge.py for list)""" return self.knowledge.get(what, key) def add_knowledge(self, what, key, value): """add certain type of knowledge""" self.knowledge.add(what, key, value) # forward thought if type(value) == object: if what == "goal": thought_value = value.info() else: thought_value = repr(value) else: thought_value = value #desc = "%s knowledge about %s is %s" % (what, key, thought_value) # ent = Entity(description=desc, what=what, key=key, value=thought_value) # self.send(Operation("thought",ent)) if what == "location": # and reverse too self.reverse_knowledge.add("location", value, key) def remove_knowledge(self, what, key): """remove certain type of knowledge""" self.knowledge.remove(what, key) ########## Importance: Knowledge about how things compare in urgency, etc.. def add_importance(self, sub, cmp, obj): """add importance: both a>b and b<a""" self.add_knowledge('importance', (sub, obj), cmp) self.add_knowledge('importance', (obj, sub), reverse_cmp[cmp]) def cmp_goal_importance(self, g1, g2): """which of goals is more important? also handle more generic ones: for example if you are comparing breakfast to sleeping it will note that having breakfast is a (isa) type of eating""" try: id1 = g1.key[1] id2 = g2.key[1] except AttributeError: return 1 l1 = ontology.get_isa(id1) l2 = ontology.get_isa(id2) for s1 in l1: for s2 in l2: cmp = self.knowledge.get('importance', (s1.id, s2.id)) if cmp: return cmp == '>' return 1 def thing_name(self, thing): """Things we own""" if hasattr(thing, 'name'): return thing.name return thing.type[0] ########## things we own def get_attached_entity(self, attachment_name): attachment_value = self.entity.get_prop_map("attached_" + attachment_name) if attachment_value: entity_id = attachment_value["$eid"] if entity_id: return self.entity.get_child(entity_id) def add_thing(self, thing): """I own this thing""" # CHEAT!: this feature not yet supported ## if not thing.location: ## thing.location=self.get_knowledge("location",thing.place) log.debug(3, str(self) + " " + str(thing) + " before add_thing: " + str(self.things)) # thought about owing thing name = self.thing_name(thing) if not name: self.pending_things.append(thing.id) return # desc="I own %s." % name # what=thing.as_entity() # ent = Entity(description=desc, what=what) # self.send(Operation("thought",ent)) dictlist.add_value(self.things, name, thing) log.debug(3, "\tafter: " + str(self.things)) def find_thing(self, thing): if str == type(thing): # return found list or empty list return self.things.get(thing, []) found = [] for t in self.things.get(self.thing_name(thing), []): if t == thing: found.append(t) return found def remove_thing(self, thing): """I don't own this anymore (it may not exist)""" dictlist.remove_value(self.things, thing) ########## goals def insert_goal(self, goal): # If it's a dynamic goal we need to add it to the trigger_goals if hasattr(goal, "trigger"): dictlist.add_value(self.trigger_goals, goal.trigger(), goal) self.goals.append(goal) def remove_goal(self, goal): """Removes a goal.""" print('Removing goal') if hasattr(goal, "trigger"): dictlist.remove_value(self.trigger_goals, goal) self.goals.remove(goal) def fulfill_goals(self, time): "see if all goals are fulfilled: if not try to fulfill them" for g in self.goals[:]: if g is None: continue if g.irrelevant: # Irrelevant goals should be kept, to match what's in _goals. continue # Don't process goals which have had three errors in them. # The idea is to allow for some leeway in goal processing, but to punish repeat offenders. if g.errors > 3: continue try: res = g.check_goal(self, time) if res: if isinstance(res, Operation) or isinstance(res, Oplist): return res return except: stacktrace = traceback.format_exc() g.errors += 1 g.lastError = stacktrace # If there's an error, print to the log, mark the goal, and continue with the next goal # Some goals have a "str" attribute which represents the constructor; if so use that if hasattr(g, "str"): goalstring = g.str else: goalstring = g.__class__.__name__ if hasattr(self, "name"): print("Error in NPC with id " + self.entity.id + " of type " + str( self.entity.type) + " and name '" + self.name + "' when checking goal " + goalstring + "\n" + stacktrace) else: print("Error in NPC with id " + self.entity.id + " of type " + str( self.entity.type) + " when checking goal " + goalstring + "\n" + stacktrace) continue # if res!=None: return res def teach_children(self, child): res = Oplist() locations = self.knowledge.get('location') for k in list(locations.keys()): es = Entity(verb='know', subject=k, object=locations[k]) res.append(Operation('say', es, to=child)) places = self.knowledge.get('place') for k in list(places.keys()): es = Entity(verb='know', subject=k, object=places[k]) res.append(Operation('say', es, to=child)) for g in self.goals: es = Entity(verb='learn', subject=g.key, object=g.str) res.append(Operation('say', es, to=child)) importances = self.knowledge.get('importance') for im in list(importances.keys()): cmp = importances[im] if cmp == '>': s, i = interlinguish.importance(im[0], cmp, im[1]) es = Entity(say=s, interlinguish=i) res.append(Operation('say', es, to=child)) return res ########## thinking (needs rewrite) def think(self): output = self.fulfill_goals(self.time) # if output and const.debug_thinking: # log.thinking(str(self)+" result at "+str(self.time)+": "+output[-1][0].description) return output ########## communication: here send it locally def send(self, op): if not self.message_queue: self.message_queue = Oplist(op) else: self.message_queue.append(op) ########## turn to face other entity def face(self, other): vector = distance_to(self.entity.location, other.location) vector.y = 0 if vector.sqr_mag() < 0.1: return vector = vector.unit_vector() newloc = Location(self.entity.location.parent) newloc.orientation = Quaternion(Vector3D(0, 0, 1), vector, Vector3D(0, 1, 0)) return Operation("move", Entity(self.entity.id, location=newloc)) def address(self, entity_id, message): """Creates a new Talk op which is addressed to an entity""" return Operation('talk', Entity(say=message, address=[entity_id])) def face_and_address(self, entity_id, message): """Utility method for generating ops for both letting the NPC face as well as address another entity. In most cases this is what you want to do when conversing.""" return self.address(entity_id, message) + \ self.face(self.map.get(entity_id))
class NPCMind(ai.Mind): """Mind class for most mobile entities in the game. An NPCMind object is associated with all NPC and similar entities on a game server. It handles perception data from the world, tracks what the NPC knows about, and handles its goals. The data is organized into three key data structures: self.map is handled by the underlying C++ code, and contains a copy of all the entities in the world that this NPC is currently able to perceive. self.knowledge contains data triples which define relations between entities. self.goals and self.trigger_goals contain trees of goals which represent current and potential activities that NPC might engage in. self.goals are goals which are checked each tick, self.trigger_goals are goals which are activated by an event.""" # Initialization def __init__(self, cppthing): # FIXME: this shouldn't be needed self.mind = cppthing # print('init') self.knowledge = Knowledge() self.mem = Memory(a_map=self.map) self.things = {} self.pending_things = [] self._reverse_knowledge() self.goals = [] self.transfers = [] # A map containing lists of goals which are to be triggered self.trigger_goals = {} self.entity_appear_goals = set() self.jitter = random.uniform(-0.1, 0.1) self.message_queue = None self.goal_id_counter = 0 self.relation_rules = [] self.entities = {} # Fill up any existing entities existing_entities = self.map.get_all() for entity in existing_entities: self.entities[entity.id] = entity self.add_hook_set("add_map") self.delete_hook_set("delete_map") self.add_property_callback('_goals', 'goals_updated') self.add_property_callback('_knowledge', 'knowledge_updated') self.add_property_callback('_relations', 'relations_updated') self.add_property_callback('_origin', 'origin_updated') def goals_updated(self, entity): # For now just clear and recreate all goals when _goals changes. We would probably rather only recreate those that have changed though. goals = entity.props['_goals'] # First clear all goals while len(self.goals): self.remove_goal(self.goals[0]) if goals: for goal_element in goals: goal = goal_create(goal_element) self.insert_goal(goal) def origin_updated(self, entity): origin = entity.get_prop_map("_origin") if origin: self.add_knowledge( "location", "origin", Location(self.map.get_add(origin["$eid"]), Point3D(origin["pos"]))) def knowledge_updated(self, entity): if entity.has_prop_map('_knowledge'): knowledge = entity.get_prop_map('_knowledge') for key, knowledge_element in knowledge.items(): (predicate, subject) = key.split(':') object_word = knowledge_element if predicate == 'location': # If it's just a string it's a reference to an entity id (with zero position). if isinstance(object_word, str): entity_id_string = object_word # A prefix of "$eid:" denotes an entity id; it should be stripped first. if entity_id_string.startswith("$eid:"): entity_id_string = entity_id_string[5:] where = self.map.get_add(entity_id_string) object_word = Location(where) else: if len(object_word) == 3: loc = self.entity.location.copy() loc.pos = Vector3D(object_word) object_word = loc elif len(object_word) == 4: entity_id_string = object_word[0] # A prefix of "$eid:" denotes an entity id; it should be stripped first. if entity_id_string.startswith("$eid:"): entity_id_string = entity_id_string[5:] where = self.map.get_add(entity_id_string) object_word = Location(where, Vector3D(object_word[:3])) self.add_knowledge(predicate, subject, object_word) def relations_updated(self, entity): self.relation_rules.clear() if entity.has_prop_list('_relations'): relations = entity.get_prop_list('_relations') for relation_element in relations: rule = {} if "filter" in relation_element: rule["filter"] = entity_filter.Filter( relation_element.filter) if "disposition" in relation_element: rule["disposition"] = relation_element.disposition else: rule["disposition"] = 0 if "threat" in relation_element: rule["threat"] = relation_element.threat else: rule["threat"] = 0 self.relation_rules.append(rule) # update relations for existing entities for (_, entity) in self.entities.items(): self.update_relation_for_entity(entity) def find_op_method(self, op_id, prefix="", undefined_op_method=None): """find right operation to invoke""" if not undefined_op_method: undefined_op_method = self.undefined_op_method return get_dict_func(self, prefix + op_id + "_operation", undefined_op_method) def undefined_op_method(self, op): """this operation is used when no other matching operation is found""" pass def get_op_name_and_sub(self, op): event_name = op.parent sub_op = op # I am not quite sure why this is while, as it's only over true # for one iteration. while len(sub_op) and sub_op[0].get_name() == "op": sub_op = sub_op[0] event_name = event_name + "_" + sub_op.parent return event_name, sub_op def is_talk_op_addressed_to_me_or_none(self, op): """Checks whether a Talk op is addressed either to none or to me. This is useful is we want to avoid replying to queries addressed to other entities.""" talk_entity = op[0] if hasattr(talk_entity, "address"): address_element = talk_entity.address if len(address_element) == 0: return True return self.entity.id in address_element return True def update_relation_for_entity(self, entity): """ Called when new entities appear or are changed. The "_relations" rules will be used to calculate the "disposition" and "threat" for the entity. """ disposition = self.map.recall_entity_memory(entity.id, "disposition_base", 0) threat = self.map.recall_entity_memory(entity.id, "threat_base", 0) for rule in self.relation_rules: # If there's no 'filter' the rule applies to all entities if "filter" not in rule or self.match_entity( rule["filter"], entity): if "disposition" in rule: disposition += rule["disposition"] if "threat" in rule: threat += rule["threat"] # print("Disposition %s, threat %s for entity %s" % (disposition, threat, entity.describe_entity())) self.map.add_entity_memory(entity.id, "disposition", disposition) self.map.add_entity_memory(entity.id, "threat", threat) # Map updates def add_map(self, obj): """Hook called by underlying map code when an entity is added. This is called when the entity type has been fully resolved (so it might in some cases not be exactly when the Mind received the entity information, if the type at that moment wasn't resolved). """ # print('See entity ' + str(obj)) self.entities[obj.id] = obj self.update_relation_for_entity(obj) res = Oplist() for goal in self.entity_appear_goals: op_res = goal.entity_appears(self, obj) if op_res: res += op_res return res def delete_map(self, obj): """Hook called by underlying map code when an entity is deleted.""" # print("Removing entity %s" % obj.id) self.entities.pop(obj.id) self.remove_thing(obj) # Operations def setup_operation(self, op): """called once by world after object has been made send first tick operation to object This method is automatically invoked by the C++ BaseMind code, due to its *_operation name.""" # Setup a tick operation for thinking # think_tick_op = Operation("tick") # think_tick_op.set_to(self.id) # think_tick_op.set_args([Entity(name="think")]) return None def tick_operation(self, op): """periodically reassess situation This method is automatically invoked by the C++ BaseMind code, due to its *_operation name. """ args = op.get_args() if len(args) != 0: if args[0].name == "think": # It's a "thinking" op, which is the base of the AI behaviour. # At regular intervals the AI needs to assess its goals; this is done through "thinking" ops. op_tick = Operation("tick") # just copy the args from the previous tick op_tick.set_args(args) op_tick.set_future_seconds(const.basic_tick + self.jitter) op_tick.set_to(self.id) for t in self.pending_things: thing = self.map.get(t) if thing and thing.type[0]: self.add_thing(thing) self.pending_things = [] result = self.think() if self.message_queue: result = self.message_queue + result self.message_queue = None return op_tick + result def think_get_operation(self, op): """A Think op wrapping a Get op is used to inquire about the status of a mind. It's often sent from authoring clients, as well as the server itself when it wants to persist the thoughts of a mind. A Get op without any args means that the mind should dump all its thoughts. If there are args however, the meaning of what's to return differs depending on the args. * If "goal" is specified, a "think" operation only pertaining to goals is returned. The "goal" arg should be a map, where the keys and values are used to specify exactly what goals to return. An empty map returns all goals. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" args = op.get_args() # If there are no args we should send all of our thoughts if len(args) == 0: return self.commune_all_thoughts(op, None) else: arg_entity = args[0] if hasattr(arg_entity, "goal"): goal_entity = arg_entity.goal return self.commune_goals(op, goal_entity) if hasattr(arg_entity, "path"): return self.commune_path(op) # TODO: allow for finer grained query of specific thoughts def commune_path(self, op): """Sends back information about the path.""" think_op = Operation("think") path = [] my_path = self.steering.path # print("path size: " + str(len(my_path))) for point in my_path: path.append([point.x, point.y, point.z]) think_op.set_args([ Entity(path=path, current_path_index=self.steering.current_path_index) ]) res = Oplist() res = res + think_op return res def commune_goals(self, op, goal_entity): """Sends back information about goals only.""" think_op = Operation("think") set_op = Operation("set") thoughts = [] # It's important that the order of the goals is retained for goal in self.goals: if hasattr(goal, "str"): goal_string = goal.str else: goal_string = goal.__class__.__name__ thoughts.append(Entity(goal=goal_string, id=goal_string)) set_op.set_args(thoughts) think_op.set_args([set_op]) think_op.set_refno(op.get_serialno()) res = Oplist() res = res + think_op return res def think_look_operation(self, op): """Sends back information about goals. This is mainly to be used for debugging minds. If no arguments are specified all goals will be reported, else a match will be done using 'index'. The information will be sent back as a Think operation wrapping an Info operation. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name. """ think_op = Operation("think") goal_info_op = Operation("info") goal_infos = [] if not op.get_args(): # get all goals for (index, goal) in enumerate(self.goals): goal_infos.append(Entity(index=index, report=goal.report())) else: for arg in op.get_args(): goal = self.goals[arg.index] if goal and goal is not None: goal_infos.append( Entity(index=arg.index, report=goal.report())) goal_info_op.set_args(goal_infos) think_op.set_refno(op.get_serialno()) think_op.set_args([goal_info_op]) res = Oplist() res = res + think_op return res def commune_all_thoughts(self, op, name): """Sends back information on all thoughts. This includes knowledge and goals, as well as known things. The thoughts will be sent back as a "think" operation, wrapping a Set operation, in a manner such that if the same think operation is sent back to the mind all thoughts will be restored. In this way the mind can support server side persistence of its thoughts. A name can optionally be supplied, which will be set on the Set operation. """ think_op = Operation("think") set_op = Operation("set") thoughts = [] for what in sorted(self.knowledge.knowings.keys()): d = self.knowledge.knowings[what] for key in sorted(d): if what != "goal": object_val = d[key] if isinstance(object_val, Location): # Serialize Location as tuple, with parent if available if object_val.parent is None: location = object_val.position else: location = ("$eid:" + object_val.parent.id, object_val.pos) goal_object = str(location) else: goal_object = str(d[key]) thoughts.append( Entity(predicate=what, subject=str(key), object=goal_object)) if len(self.things) > 0: things = {} for (id, thinglist) in sorted(self.things.items()): idlist = [] for thing in thinglist: idlist.append(thing.id) things[id] = idlist thoughts.append(Entity(things=things)) if len(self.pending_things) > 0: thoughts.append(Entity(pending_things=self.pending_things)) set_op.set_args(thoughts) think_op.set_args([set_op]) if not op.is_default_serialno(): think_op.set_refno(op.get_serialno()) if name: set_op.set_name(name) res = Oplist() res = res + think_op return res # Talk operations def admin_sound(self, op): assert (op.from_ == op.to) return op.from_ == self.entity.id def interlinguish_warning(self, op, say, msg): log.debug( 1, str(self.entity.id) + " interlinguish_warning: " + str(msg) + ": " + str(say[0].lexlink.id[1:]), op) def interlinguish_desire_verb3_buy_verb1_operation(self, op, say): """Handle a sentence of the form 'I would like to buy a ....' Check if we have any of the type of thing the other character is interested in, and whether we know what price to sell at. If so set up the transaction goal, which offers to sell it.""" word_object = say[1].word word_thing = self.things.get(word_object) if word_thing: price = self.get_knowledge("price", word_object) if not price: return goal = Transaction(word_object, op.to, price) who = self.map.get(op.to) self.goals.insert(0, goal) return Operation( "talk", Entity(say=self.thing_name(who) + " one " + word_object + " will be " + str(price) + " coins")) + self.face(who) def interlinguish_desire_verb3_operation(self, op, say): """Handle a sentence of the form 'I would like to ...'""" word_object = say[2:] word_verb = interlinguish.get_verb(word_object) operation_method = self.find_op_method( word_verb, "interlinguish_desire_verb3_", self.interlinguish_undefined_operation) res = Oplist() res = res + self.call_interlinguish_triggers( word_verb, "interlinguish_desire_verb3_", op, word_object) res = res + operation_method(op, word_object) return res def interlinguish_know_verb1_operation(self, op, say): """Handle a sentence of the form 'know subject predicate object' Accept admin instruction about knowledge, and store the triple in our knowledge base.""" if not self.admin_sound(op): return self.interlinguish_warning(op, say, "You are not admin") word_subject = say[1].word word_predicate = say[2].word word_object = say[3].word # print "know:",subject,predicate,object if word_object[0] == '(': # CHEAT!: remove eval xyz = list(eval(word_object)) loc = self.entity.location.copy() loc.pos = Vector3D(xyz) self.add_knowledge(word_predicate, word_subject, loc) else: self.add_knowledge(word_predicate, word_subject, word_object) def interlinguish_tell_verb1_operation(self, op, say): """Handle a sentence of the form 'Tell (me) ....' Accept queries about what we know. Mostly this is for debugging and for the time being it is useful to answer these queries no matter who asks.""" # Ignore messages addressed to others if not self.is_talk_op_addressed_to_me_or_none(op): return None # Currently no checking for trus here. # We are being liberal with interpretation of "subject" and "object" word_subject = say[1].word word_predicate = say[2].word word_object = say[3].word k = self.get_knowledge(word_predicate, word_object) if k is None: pass # return Operation('talk',Entity(say="I know nothing about the "+predicate+" of "+object)) else: k_type = type(k) if isinstance(k_type, Location): dist = self.steering.direction_to(k) dist.y = 0 distmag = dist.mag() if distmag < 8: k = 'right here' else: # Currently this assumes dist is relative to TLVE k = '%f metres %s' % (distmag, vector_to_compass(dist)) elif k_type != str: k = 'difficult to explain' elif word_predicate == 'about': return self.face_and_address(op.to, k) return self.face_and_address( op.to, "The " + word_predicate + " of " + word_object + " is " + k) def interlinguish_list_verb1_operation(self, op, say): """Handle a sentence of the form 'List (me) ....' Accept queries about what we know. Mostly this is for debugging and for the time being it is useful to answer these queries no matter who asks. Querying for "all knowledge" will list all knowledge. """ # Ignore messages addressed to others if not self.is_talk_op_addressed_to_me_or_none(op): return None # Currently no checking for trus here. # We are being liberal with interpretation of "subject" and "object" word_subject = say[1].word word_predicate = say[2].word if word_predicate == 'all knowledge': res = Oplist() res = res + self.face(self.map.get(op.to)) for attr in dir(self.knowledge.knowings): d = self.knowledge.knowings[attr] for key in d: # print attr + " of "+key+": " +str(d[key]) res = res + self.address( op.to, "The " + attr + " of " + key + " is " + str(d[key])) return res else: d = self.knowledge.get(word_predicate) if len(d) == 0: return None res = Oplist() res = res + self.face(self.map.get(op.to)) for key in d: res = res + self.address( op.to, "The " + word_predicate + " of " + key + " is " + str(d[key])) return res def interlinguish_own_verb1_operation(self, op, say): """Handle a sentence of the form ' own ...' Sentences of this form from the admin inform us that we own an entity. This is essential when an entity needs to be used as a tool, or raw material.""" if not self.admin_sound(op): return self.interlinguish_warning(op, say, "You are not admin") # print self,"own:",say[1].word,say[2].word word_subject = self.map.get_add(say[1].word) # print "subject found:",subject word_object = self.map.get_add(say[2].word) # print "object found:",object # if subject.id==self.entity.id: # foo if word_subject.id == self.entity.id: self.add_thing(word_object) def interlinguish_undefined_operation(self, op, say): # CHEAT!: any way to handle these? log.debug(2, str(self.entity.id) + " interlinguish_undefined_operation:", op) log.debug(2, str(say)) # Sound operations def sound_talk_operation(self, op): """Handle the sound of a talk operation from another character. The spoken sentence comes in as a sentence string, which is converted into a structure representation by the interlinguish code. Embedded in the structure is the interlinguish string which is then used to call methods and activate triggers, such as dynamic goals.""" talk_entity = op[0] say = interlinguish.convert_english_to_interlinguish(self, talk_entity) if say: verb = interlinguish.get_verb(say) operation_method = self.find_op_method( verb, "interlinguish_", self.interlinguish_undefined_operation) res = self.call_interlinguish_triggers(verb, "interlinguish_", op, say) res2 = operation_method(op, say) if res: res += res2 else: res = res2 return res # Other operations def call_interlinguish_triggers(self, verb, prefix, op, say): """Call trigger goals that have registered a trigger string that matches the current interlinguish string. Given an interlinguish verb string, and a prefix, find any trigger goals that should be activated by the combined trigger string, and activate them.""" # FIXME Don't need this call to get_op_name_and_sub, as we don't use # the result. null_name, sub_op = self.get_op_name_and_sub(op) event_name = prefix + verb reply = Oplist() for goal in self.trigger_goals.get(event_name, []): reply += goal.event(self, op, say) return reply def call_triggers_operation(self, op): event_name, sub_op = self.get_op_name_and_sub(op) reply = Oplist() for goal in self.trigger_goals.get(event_name, []): reply += goal.event(self, op, sub_op) return reply # Generic knowledge def _reverse_knowledge(self): """normally location: tell where items reside reverse location tells what resides in this spot""" self.reverse_knowledge = Knowledge() if "location" in self.knowledge.knowings: for (k, v) in list(self.knowledge.knowings['location'].items()): self.reverse_knowledge.add("location", v, k) def get_reverse_knowledge(self, what, key): """get certain reverse knowledge value what: what kind of knowledge (location only so far)""" return self.reverse_knowledge.get(what, key) def get_knowledge(self, what, key): """get certain knowledge value what: what kind of knowledge (see Knowledge.py for list)""" return self.knowledge.get(what, key) def add_knowledge(self, what, key, value): """add certain type of knowledge""" self.knowledge.add(what, key, value) # forward thought if isinstance(value, object): if what == "goal": thought_value = value.info() else: thought_value = repr(value) else: thought_value = value # desc = "%s knowledge about %s is %s" % (what, key, thought_value) # ent = Entity(description=desc, what=what, key=key, value=thought_value) # self.send(Operation("thought",ent)) if what == "location": # and reverse too self.reverse_knowledge.add("location", value, key) def remove_knowledge(self, what, key): """remove certain type of knowledge""" self.knowledge.remove(what, key) def thing_name(self, thing): """Things we own""" if hasattr(thing, 'name'): return thing.name return thing.type[0] # things we own def get_attached_entity(self, attachment_name): attachment_value = self.entity.get_prop_map("attached_" + attachment_name) if attachment_value: entity_id = attachment_value["$eid"] if entity_id: return self.entity.get_child(entity_id) def add_thing(self, thing): """I own this thing""" # CHEAT!: this feature not yet supported # if not thing.location: # thing.location=self.get_knowledge("location",thing.place) log.debug( 3, str(self) + " " + str(thing) + " before add_thing: " + str(self.things)) # thought about owing thing name = self.thing_name(thing) if not name: self.pending_things.append(thing.id) return # desc="I own %s." % name # what=thing.as_entity() # ent = Entity(description=desc, what=what) # self.send(Operation("thought",ent)) dictlist.add_value(self.things, name, thing) log.debug(3, "\tafter: " + str(self.things)) def find_thing(self, thing): if str == type(thing): # return found list or empty list return self.things.get(thing, []) found = [] for t in self.things.get(self.thing_name(thing), []): if t == thing: found.append(t) return found def remove_thing(self, thing): """I don't own this anymore (it may not exist)""" dictlist.remove_value(self.things, thing) # goals def insert_goal(self, goal): # Collect all triggering goals and add them if hasattr(goal, "triggering_goals") and goal.triggering_goals is not None: triggering_goals = goal.triggering_goals() for g in triggering_goals: print("Adding trigger goal: {}".format(str(g))) # Allow the trigger to either be a single string, or a list of strings trigger = g.trigger() if isinstance(trigger, list): for trigger_instance in trigger: dictlist.add_value(self.trigger_goals, trigger_instance, g) else: dictlist.add_value(self.trigger_goals, trigger, g) if hasattr(goal, "entity_appears") and goal.entity_appears is not None: self.entity_appear_goals.add(goal) self.goals.append(goal) def remove_goal(self, goal): """Removes a goal.""" # print('Removing goal') if hasattr(goal, "triggering_goals") and goal.triggering_goals is not None: triggering_goals = goal.triggering_goals() for g in triggering_goals: print("Removing trigger goal: {}".format(str(g))) dictlist.remove_value(self.trigger_goals, g) if hasattr(goal, "entity_appears") and goal.entity_appears is not None: self.entity_appear_goals.remove(goal) self.goals.remove(goal) def fulfill_goals(self): """see if all goals are fulfilled: if not try to fulfill them""" for g in self.goals[:]: if g is None: continue if g.irrelevant: # Irrelevant goals should be kept, to match what's in _goals. continue try: res = g.check_goal(self) if res: if isinstance(res, Operation) or isinstance(res, Oplist): return res return except Exception: stacktrace = traceback.format_exc() # Keep track of the number of errors in this goal. This could be used for better logging in the future. g.errors += 1 g.lastError = stacktrace # If there's an error, print to the log, mark the goal, and continue with the next goal # Some goals have a "str" attribute which represents the constructor; if so use that if hasattr(g, "str"): goal_string = g.str else: goal_string = g.__class__.__name__ if hasattr(self, "name"): print("Error in NPC with id " + self.entity.id + " of type " + str(self.entity.type) + " and name '" + self.name + "' when checking goal " + goal_string + "\n" + stacktrace) else: print("Error in NPC with id " + self.entity.id + " of type " + str(self.entity.type) + " when checking goal " + goal_string + "\n" + stacktrace) continue # if res!=None: return res def teach_children(self, child): res = Oplist() locations = self.knowledge.get('location') for k in list(locations.keys()): es = Entity(verb='know', subject=k, object=locations[k]) res.append(Operation('say', es, to=child)) places = self.knowledge.get('place') for k in list(places.keys()): es = Entity(verb='know', subject=k, object=places[k]) res.append(Operation('say', es, to=child)) for g in self.goals: es = Entity(verb='learn', subject=g.key, object=g.str) res.append(Operation('say', es, to=child)) importances = self.knowledge.get('importance') for im in list(importances.keys()): cmp = importances[im] if cmp == '>': s, i = interlinguish.importance(im[0], cmp, im[1]) es = Entity(say=s, interlinguish=i) res.append(Operation('say', es, to=child)) return res # thinking (needs rewrite) def think(self, ent): for t in self.pending_things: thing = self.map.get(t) if thing and thing.type[0]: self.add_thing(thing) self.pending_things = [] output = self.fulfill_goals() if self.message_queue: output = self.message_queue + output self.message_queue = None # if output and const.debug_thinking: # log.thinking(str(self)+" result at "+str(self.time)+": "+output[-1][0].description) return output # communication: here send it locally def send(self, op): if not self.message_queue: self.message_queue = Oplist(op) else: self.message_queue.append(op) def face(self, other): """turn to face other entity""" vector = self.steering.direction_to(other) if vector is None: return vector.y = 0 if vector.sqr_mag() < 0.1: return vector = vector.unit_vector() return Operation( "set", Entity(self.entity.id, _direction=Quaternion(Vector3D(0, 0, 1), vector, Vector3D(0, 1, 0)).as_list())) def address(self, entity_id, message): """Creates a new Talk op which is addressed to an entity""" return Operation('talk', Entity(say=message, address=[entity_id])) def face_and_address(self, entity_id, message): """Utility method for generating ops for both letting the NPC face as well as address another entity. In most cases this is what you want to do when conversing.""" return self.address(entity_id, message) + self.face( self.map.get(entity_id))
class NPCMind(server.Mind): """Mind class for most mobile entities in the game. An NPCMind object is associated with all NPC and similar entities on a game server. It handles perception data from the world, tracks what the NPC knows about, and handles its goals. The data is organized into three key data structures: self.map is handled by the underlying C++ code, and contains a copy of all the entities in the world that this NPC is currently able to perceive. self.knowledge contains data triples which define relations between entities. self.goals and self.trigger_goals contain trees of goals which represent current and potential activities that NPC might engage in. self.goals are goals which are checked each tick, self.trigger_goals are goals which are activated by an event.""" ########## Initialization def __init__(self, cppthing): self.mind = cppthing self.knowledge = Knowledge() self.mem = Memory(map=self.map) self.things = {} self.pending_things = [] self._reverse_knowledge() self.goals = [] self.money_transfers = [] self.transfers = [] self.trigger_goals = {} self.jitter = random.uniform(-0.1, 0.1) #???self.debug=debug(self.name+".mind.log") self.message_queue = None #This is going to be really tricky self.map.add_hooks_append("add_map") self.map.update_hooks_append("update_map") self.map.delete_hooks_append("delete_map") self.goal_id_counter = 0 def print_debug(self, message): """Prints a debug message using 'print', prepending the message with a description of the entity.""" print(self.describeEntity() + ": " + message) def find_op_method(self, op_id, prefix="", undefined_op_method=None): """find right operation to invoke""" if not undefined_op_method: undefined_op_method = self.undefined_op_method return get_dict_func(self, prefix + op_id + "_operation", undefined_op_method) def undefined_op_method(self, op): """this operation is used when no other matching operation is found""" pass def get_op_name_and_sub(self, op): event_name = op.id sub_op = op # I am not quite sure why this is while, as it's only over true # for one iteration. while len(sub_op) and sub_op[0].get_name() == "op": sub_op = sub_op[0] event_name = event_name + "_" + sub_op.id return event_name, sub_op def is_talk_op_addressed_to_me_or_none(self, op): """Checks whether a Talk op is addressed either to none or to me. This is useful is we want to avoid replying to queries addressed to other entities.""" talk_entity = op[0] if hasattr(talk_entity, "address"): addressElement = talk_entity.address if len(addressElement) == 0: return True return self.id in addressElement return True ########## Map updates def add_map(self, obj): """Hook called by underlying map code when an entity is added.""" #print "Map add",obj pass def update_map(self, obj): """Hook called by underlying map code when an entity is updated. Fix ownership category for objects owned temporary under 'Foo' type.""" #print "Map update",obj foo_lst = self.things.get('Foo', []) for foo in foo_lst[:]: #us copy in loop, because it might get modified print("Oh MY GOD! We have a Foo thing!") if foo.id == obj.id: self.remove_thing(foo) self.add_thing(obj) def delete_map(self, obj): """Hook called by underlying map code when an entity is deleted.""" #print "Map delete",obj self.remove_thing(obj) ########## Operations def setup_operation(self, op): """called once by world after object has been made send first tick operation to object This method is automatically invoked by the C++ BaseMind code, due to its *_operation name.""" #CHEAT!: add memory, etc... initialization (or some of it to __init__) #Setup a tick operation for thinking thinkTickOp = Operation("tick") thinkTickOp.setArgs([Entity(name="think")]) #Setup a tick operation for moving moveTickOp = Operation("tick") moveTickOp.setArgs([Entity(name="move")]) moveTickOp.setFutureSeconds(0.2) #Setup a tick operation for periodical persistence of thoughts to the server sendThoughtsTickOp = Operation("tick") sendThoughtsTickOp.setArgs([Entity(name="persistthoughts")]) sendThoughtsTickOp.setFutureSeconds(5) return Operation( "look") + thinkTickOp + moveTickOp + sendThoughtsTickOp def tick_operation(self, op): """periodically reasses situation This method is automatically invoked by the C++ BaseMind code, due to its *_operation name. """ args = op.getArgs() if len(args) != 0: if args[0].name == "think": #It's a "thinking" op, which is the base of the AI behaviour. #At regular intervals the AI needs to assess its goals; this is one through "thinkning" ops. opTick = Operation("tick") #just copy the args from the previous tick opTick.setArgs(args) opTick.setFutureSeconds(const.basic_tick + self.jitter) for t in self.pending_things: thing = self.map.get(t) if thing and thing.type[0]: self.add_thing(thing) self.pending_things = [] result = self.think() if self.message_queue: result = self.message_queue + result self.message_queue = None return opTick + result elif args[0].name == "persistthoughts": #It's a periodic tick for sending thoughts to the server (so that they can be persisted) #TODO: only send thoughts when they have changed. opTick = Operation("tick") #just copy the args from the previous tick opTick.setArgs(args) #Persist the thoughts to the server at 30 second intervals. opTick.setFutureSeconds(30) result = self.commune_all_thoughts(op, "persistthoughts") return opTick + result ########## Sight operations def sight_create_operation(self, op): """Note our ownership of entities we created. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" #BaseMind version overridden! obj = self.map.add(op[0], op.getSeconds()) if op.to == self.id: self.add_thing(obj) def sight_move_operation(self, op): """change position in our local map This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" obj = self.map.update(op[0], op.getSeconds()) if obj.location.parent and obj.location.parent.id == self.id: self.add_thing(obj) if op.to != self.id: self.transfers.append((op.from_, obj.id)) if obj.type[0] == "coin" and op.from_ != self.id: self.money_transfers.append([op.from_, 1]) return Operation("imaginary", Entity(description="accepts")) def think_get_operation(self, op): """A Think op wrapping a Get op is used to inquire about the status of a mind. It's often sent from authoring clients, as well as the server itself when it wants to persist the thoughts of a mind. A Get op without any args means that the mind should dump all its thoughts. If there are args however, the meaning of what's to return differs depending on the args. * If "goal" is specified, a "think" operation only pertaining to goals is returned. The "goal" arg should be a map, where the keys and values are used to specify exactly what goals to return. An empty map returns all goals. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" args = op.getArgs() #If there are no args we should send all of our thoughts if len(args) == 0: return self.commune_all_thoughts(op, None) else: argEntity = args[0] if hasattr(argEntity, "goal"): goal_entity = argEntity.goal return self.commune_goals(op, goal_entity) if hasattr(argEntity, "path"): return self.commune_path(op) #TODO: allow for finer grained query of specific thoughts def commune_path(self, op): """Sends back information about the path.""" thinkOp = Operation("think") path = [] myPath = self.path #self.print_debug("path size: " + str(len(myPath))) for point in myPath: path.append([point.x, point.y, point.z]) thinkOp.setArgs([Entity(path=path)]) res = Oplist() res = res + thinkOp return res def commune_goals(self, op, goal_entity): """Sends back information about goals only.""" thinkOp = Operation("think") setOp = Operation("set") thoughts = [] #It's important that the order of the goals is retained for goal in self.goals: goalString = "" if hasattr(goal, "str"): goalString = goal.str else: goalString = goal.__class__.__name__ thoughts.append(Entity(goal=goalString, id=goalString)) for (trigger, goallist) in sorted(self.trigger_goals.items()): for goal in goallist: goalString = "" if hasattr(goal, "str"): goalString = goal.str else: goalString = goal.__class__.__name__ thoughts.append(Entity(goal=goalString, id=goalString)) setOp.setArgs(thoughts) thinkOp.setArgs([setOp]) thinkOp.setRefno(op.getSerialno()) res = Oplist() res = res + thinkOp return res def find_goal(self, definition): """Searches for a goal, with the specified id""" #Goals are either stored in "self.goals" or "self.trigger_goals", so we need #to check both for goal in self.goals: if goal.str == definition: return goal for (trigger, goallist) in sorted(self.trigger_goals.items()): for goal in goallist: if goal.str == definition: return goal return None def think_look_operation(self, op): """Sends back information about goals. This is mainly to be used for debugging minds. If no arguments are specified all goals will be reported, else a match will be done using 'id'. The information will be sent back as a Think operation wrapping an Info operation. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name. """ thinkOp = Operation("think") goalInfoOp = Operation("info") goal_infos = [] if not op.getArgs(): #get all goals for goal in self.goals: goal_infos.append(Entity(id=goal.str, report=goal.report())) for (trigger, goallist) in sorted(self.trigger_goals.items()): for goal in goallist: goal_infos.append(Entity(id=goal.str, report=goal.report())) else: for arg in op.getArgs(): goal = self.find_goal(arg.id) if goal and goal is not None: goal_infos.append(Entity(id=goal.str, report=goal.report())) goalInfoOp.setArgs(goal_infos) thinkOp.setRefno(op.getSerialno()) thinkOp.setArgs([goalInfoOp]) res = Oplist() res = res + thinkOp return res def commune_all_thoughts(self, op, name): """Sends back information on all thoughts. This includes knowledge and goals, as well as known things. The thoughts will be sent back as a "think" operation, wrapping a Set operation, in a manner such that if the same think operation is sent back to the mind all thoughts will be restored. In this way the mind can support server side persistence of its thoughts. A name can optionally be supplied, which will be set on the Set operation. """ thinkOp = Operation("think") setOp = Operation("set") thoughts = [] for what in sorted(self.knowledge.knowings.keys()): d = self.knowledge.knowings[what] for key in sorted(d): if what != "goal": objectVal = d[key] if type(objectVal) is Location: #Serialize Location as tuple, with parent if available if (objectVal.parent is None): location = objectVal.coordinates else: location = ("$eid:" + objectVal.parent.id, objectVal.coordinates) object = str(location) else: object = str(d[key]) thoughts.append( Entity(predicate=what, subject=str(key), object=object)) #It's important that the order of the goals is retained for goal in self.goals: if hasattr(goal, "str"): thoughts.append(Entity(goal=goal.str, id=goal.str)) for (trigger, goallist) in sorted(self.trigger_goals.items()): for goal in goallist: if hasattr(goal, "str"): thoughts.append(Entity(goal=goal.str, id=goal.str)) if len(self.things) > 0: things = {} for (id, thinglist) in sorted(self.things.items()): idlist = [] for thing in thinglist: idlist.append(thing.id) things[id] = idlist thoughts.append(Entity(things=things)) if len(self.pending_things) > 0: thoughts.append(Entity(pending_things=self.pending_things)) setOp.setArgs(thoughts) thinkOp.setArgs([setOp]) if not op.isDefaultSerialno(): thinkOp.setRefno(op.getSerialno()) if name: setOp.setName(name) res = Oplist() res = res + thinkOp return res def think_delete_operation(self, op): """Deletes a thought, or all thoughts if no argument is specified. This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" if not op.getArgs(): self.goals = [] self.trigger_goals = {} else: args = op.getArgs() for thought in args: for goal in self.goals: if goal.str == thought.id: self.goals.remove(goal) return for (trigger, goallist) in sorted(self.trigger_goals.items()): for goal in goallist: if goal.str == thought.id: goallist.remove(goal) return def think_set_operation(self, op): """Sets a new thought, or updates an existing one This method is automatically invoked by the C++ BaseMind code, due to its *_*_operation name.""" #If the Set op has the name "peristthoughts" it's a Set op sent to ourselves meant for the server #(so it can persist the thoughts in the database). We should ignore it. if op.getName() == "persistthoughts": return args = op.getArgs() for thought in args: #Check if there's a 'predicate' set; if so handle it as knowledge. #Else check if it's things that we know we own or ought to own. if hasattr(thought, "predicate") == False: if hasattr(thought, "things"): things = thought.things for (id, thinglist) in list(things.items()): #We can't iterate directly over the list, as it's of type atlas.Message; we must first "pythonize" it. #This should be reworked into a better way. thinglist = thinglist.pythonize() for thingId in thinglist: thingId = str(thingId) thing = self.map.get(thingId) if thing and thing.type[0]: self.add_thing(thing) else: self.pending_things.append(thingId) elif hasattr(thought, "pending_things"): for id in thought.pending_things: self.pending_things.append(str(id)) elif hasattr(thought, "goal"): goalString = str(thought.goal) if hasattr(thought, "id"): id = str(thought.id) goal = self.find_goal(id) if goal: self.update_goal(goal, goalString) else: self.add_goal(goalString) else: self.add_goal(goalString) else: subject = thought.subject predicate = thought.predicate object = thought.object #Handle locations. if len(object) > 0 and object[0] == '(': #CHEAT!: remove eval locdata = eval(object) #If only coords are supplied, it's handled as a location within the same parent space as ourselves if (len(locdata) == 3): loc = self.location.copy() loc.coordinates = Vector3D(list(locdata)) elif (len(locdata) == 2): entity_id_string = locdata[0] #A prefix of "$eid:" denotes an entity id; it should be stripped first. if entity_id_string.startswith("$eid:"): entity_id_string = entity_id_string[5:] where = self.map.get_add(entity_id_string) coords = Point3D(list(locdata[1])) loc = Location(where, coords) self.add_knowledge(predicate, subject, loc) else: self.add_knowledge(predicate, subject, object) ########## Talk operations def admin_sound(self, op): assert (op.from_ == op.to) return op.from_ == self.id def interlinguish_warning(self, op, say, msg): log.debug(1,str(self.id)+" interlinguish_warning: "+str(msg)+\ ": "+str(say[0].lexlink.id[1:]),op) def interlinguish_desire_verb3_buy_verb1_operation(self, op, say): """Handle a sentence of the form 'I would like to buy a ....' Check if we have any of the type of thing the other character is interested in, and whether we know what price to sell at. If so set up the transaction goal, which offers to sell it.""" object = say[1].word thing = self.things.get(object) if thing: price = self.get_knowledge("price", object) if not price: return goal = mind.goals.common.misc_goal.transaction( object, op.to, price) who = self.map.get(op.to) self.goals.insert(0, goal) return Operation( "talk", Entity(say=self.thing_name(who) + " one " + object + " will be " + str(price) + " coins")) + self.face(who) def interlinguish_desire_verb3_operation(self, op, say): """Handle a sentence of the form 'I would like to ...'""" object = say[2:] verb = interlinguish.get_verb(object) operation_method = self.find_op_method( verb, "interlinguish_desire_verb3_", self.interlinguish_undefined_operation) res = Oplist() res = res + self.call_interlinguish_triggers( verb, "interlinguish_desire_verb3_", op, object) res = res + operation_method(op, object) return res def interlinguish_be_verb1_operation(self, op, say): """Handle sentences of the form '... is more important that ...' Accept instructions about the priority of goals relative to each based on key verbs associated with those goals.""" if not self.admin_sound(op): return self.interlinguish_warning(op, say, "You are not admin") res = interlinguish.match_importance(say) if res: return self.add_importance(res['sub'].id, '>', res['obj'].id) else: return self.interlinguish_warning(op, say, "Unknown assertion") def interlinguish_know_verb1_operation(self, op, say): """Handle a sentence of the form 'know subject predicate object' Accept admin instruction about knowledge, and store the triple in our knowledge base.""" if not self.admin_sound(op): return self.interlinguish_warning(op, say, "You are not admin") subject = say[1].word predicate = say[2].word object = say[3].word ## print "know:",subject,predicate,object if object[0] == '(': #CHEAT!: remove eval xyz = list(eval(object)) loc = self.location.copy() loc.coordinates = Vector3D(xyz) self.add_knowledge(predicate, subject, loc) else: self.add_knowledge(predicate, subject, object) def interlinguish_tell_verb1_operation(self, op, say): """Handle a sentence of the form 'Tell (me) ....' Accept queries about what we know. Mostly this is for debugging and for the time being it is useful to answer these queries no matter who hasks.""" # Ignore messages addressed to others if not self.is_talk_op_addressed_to_me_or_none(op): return None # Currently no checking for trus here. # We are being liberal with interpretation of "subject" and "object" subject = say[1].word predicate = say[2].word object = say[3].word k = self.get_knowledge(predicate, object) if k == None: pass # return Operation('talk',Entity(say="I know nothing about the "+predicate+" of "+object)) else: k_type = type(k) if k_type == type(Location()): dist = distance_to(self.location, k) dist.y = 0 distmag = dist.mag() if distmag < 8: k = 'right here' else: # Currently this assumes dist is relative to TLVE k = '%f metres %s' % (distmag, vector_to_compass(dist)) elif k_type != str: k = 'difficult to explain' elif predicate == 'about': return self.face_and_address(op.to, k) return self.face_and_address( op.to, "The " + predicate + " of " + object + " is " + k) def interlinguish_list_verb1_operation(self, op, say): """Handle a sentence of the form 'List (me) ....' Accept queries about what we know. Mostly this is for debugging and for the time being it is useful to answer these queries no matter who asks. Querying for "all knowledge" will list all knowledge. """ # Ignore messages addressed to others if not self.is_talk_op_addressed_to_me_or_none(op): return None # Currently no checking for trus here. # We are being liberal with interpretation of "subject" and "object" subject = say[1].word predicate = say[2].word if predicate == 'all knowledge': res = Oplist() res = res + self.face(self.map.get(op.to)) for attr in dir(self.knowledge.knowings): d = self.knowledge.knowings[attr] for key in d: #print attr + " of "+key+": " +str(d[key]) res = res + self.address( op.to, "The " + attr + " of " + key + " is " + str(d[key])) return res else: d = self.knowledge.get(predicate) if len(d) == 0: return None res = Oplist() res = res + self.face(self.map.get(op.to)) for key in d: res = res + self.address( op.to, "The " + predicate + " of " + key + " is " + str(d[key])) return res def interlinguish_own_verb1_operation(self, op, say): """Handle a sentence of the form ' own ...' Sentences of this form from the admin inform us that we own an entity. This is essential when an entity needs to be used as a tool, or raw material.""" if not self.admin_sound(op): return self.interlinguish_warning(op, say, "You are not admin") ## print self,"own:",say[1].word,say[2].word subject = self.map.get_add(say[1].word) ## print "subject found:",subject object = self.map.get_add(say[2].word) ## print "object found:",object ## if subject.id==self.id: ## foo if subject.id == self.id: self.add_thing(object) def interlinguish_undefined_operation(self, op, say): #CHEAT!: any way to handle these? log.debug(2, str(self.id) + " interlinguish_undefined_operation:", op) log.debug(2, str(say)) ########## Sound operations def sound_talk_operation(self, op): """Handle the sound of a talk operation from another character. The spoken sentence comes in as a sentence string, which is converted into a structure representation by the interlinguish code. Embedded in the structure is the interlinguish string which is then used to call methods and activate triggers, such as dynamic goals.""" talk_entity = op[0] if interlinguish.convert_english_to_interlinguish(self, talk_entity): say = talk_entity.interlinguish verb = interlinguish.get_verb(say) operation_method = self.find_op_method( verb, "interlinguish_", self.interlinguish_undefined_operation) res = self.call_interlinguish_triggers(verb, "interlinguish_", op, say) res2 = operation_method(op, say) if res: res += res2 else: res = res2 return res ########## Other operations def call_interlinguish_triggers(self, verb, prefix, op, say): """Call trigger goals that have registered a trigger string that matches the current interlinguish string. Given an interlinguish verb string, and a prefix, find any trigger goals that should be activated by the combined trigger string, and activate them.""" # FIXME Don't need this call to get_op_name_and_sub, as we don't use # the result. null_name, sub_op = self.get_op_name_and_sub(op) event_name = prefix + verb reply = Oplist() for goal in self.trigger_goals.get(event_name, []): reply += goal.event(self, op, say) return reply def call_triggers_operation(self, op): event_name, sub_op = self.get_op_name_and_sub(op) reply = Oplist() for goal in self.trigger_goals.get(event_name, []): reply += goal.event(self, op, sub_op) return reply ########## Generic knowledge def _reverse_knowledge(self): """normally location: tell where items reside reverse location tells what resides in this spot""" self.reverse_knowledge = Knowledge() if "location" in self.knowledge.knowings: for (k, v) in list(self.knowledge.knowings['location'].items()): self.reverse_knowledge.add("location", v, k) def get_reverse_knowledge(self, what, key): """get certain reverse knowledge value what: what kind of knowledge (location only so far)""" return self.reverse_knowledge.get(what, key) def get_knowledge(self, what, key): """get certain knowledge value what: what kind of knowledge (see Knowledge.py for list)""" return self.knowledge.get(what, key) def add_knowledge(self, what, key, value): """add certain type of knowledge""" self.knowledge.add(what, key, value) #forward thought if type(value) == object: if what == "goal": thought_value = value.info() else: thought_value = repr(value) else: thought_value = value desc = "%s knowledge about %s is %s" % (what, key, thought_value) # ent = Entity(description=desc, what=what, key=key, value=thought_value) # self.send(Operation("thought",ent)) if what == "location": #and reverse too self.reverse_knowledge.add("location", value, key) def remove_knowledge(self, what, key): """remove certain type of knowledge""" self.knowledge.remove(what, key) ########## Importance: Knowledge about how things compare in urgency, etc.. def add_importance(self, sub, cmp, obj): """add importance: both a>b and b<a""" self.add_knowledge('importance', (sub, obj), cmp) self.add_knowledge('importance', (obj, sub), reverse_cmp[cmp]) def cmp_goal_importance(self, g1, g2): """which of goals is more important? also handle more generic ones: for example if you are comparing breakfast to sleeping it will note that having breakfast is a (isa) type of eating""" try: id1 = g1.key[1] id2 = g2.key[1] except AttributeError: return 1 l1 = ontology.get_isa(id1) l2 = ontology.get_isa(id2) for s1 in l1: for s2 in l2: cmp = self.knowledge.get('importance', (s1.id, s2.id)) if cmp: return cmp == '>' return 1 ########## things we own def thing_name(self, thing): if hasattr(thing, 'name'): return thing.name return thing.type[0] ########## things we own def add_thing(self, thing): """I own this thing""" #CHEAT!: this feature not yet supported ## if not thing.location: ## thing.location=self.get_knowledge("location",thing.place) log.debug( 3, str(self) + " " + str(thing) + " before add_thing: " + str(self.things)) #thought about owing thing name = self.thing_name(thing) if not name: self.pending_things.append(thing.id) return # desc="I own %s." % name # what=thing.as_entity() # ent = Entity(description=desc, what=what) # self.send(Operation("thought",ent)) dictlist.add_value(self.things, name, thing) log.debug(3, "\tafter: " + str(self.things)) def find_thing(self, thing): if str == type(thing): #return found list or empty list return self.things.get(thing, []) found = [] for t in self.things.get(self.thing_name(thing), []): if t == thing: found.append(t) return found def remove_thing(self, thing): """I don't own this anymore (it may not exist)""" dictlist.remove_value(self.things, thing) ########## goals def add_goal(self, str_goal): """add goal...""" try: goal = self.create_goal(str_goal) except BaseException as e: print(("Error when adding goal: " + str(e))) return self.insert_goal(goal) return goal def insert_goal(self, goal, id=None): if not id: self.goal_id_counter = self.goal_id_counter + 1 id = str(self.goal_id_counter) goal.id = id if hasattr(goal, "trigger"): dictlist.add_value(self.trigger_goals, goal.trigger(), goal) return for i in range(len(self.goals) - 1, -1, -1): if self.cmp_goal_importance(self.goals[i], goal): self.goals.insert(i + 1, goal) return self.goals.insert(0, goal) def update_goal(self, goal, str_goal): try: new_goal = self.create_goal(goal.key, str_goal) except BaseException as e: print(("Error when updating goal: " + str(e))) return new_goal.id = goal.id #We need to handle the case where a goal which had a trigger is replaced by one #that hasn't, and the opposite if hasattr(goal, "trigger"): dictlist.remove_value(self.trigger_goals, goal) self.insert_goal(new_goal, goal.id) else: if hasattr(new_goal, "trigger"): self.goals.remove(goal) self.insert_goal(new_goal, goal.id) else: index = self.goals.index(goal) self.goals[index] = new_goal def create_goal(self, str_goal): #CHEAT!: remove eval (this and later) goal = eval("mind.goals." + str_goal) if const.debug_thinking: goal.debug = 1 goal.str = str_goal return goal def remove_goal(self, goal): """Removes a goal.""" if hasattr(goal, "trigger"): dictlist.remove_value(self.trigger_goals, goal) else: self.goals.remove(goal) def fulfill_goals(self, time): "see if all goals are fulfilled: if not try to fulfill them" for g in self.goals[:]: if g.irrelevant: self.goals.remove(g) continue #Don't process goals which have had three errors in them. #The idea is to allow for some leeway in goal processing, but to punish repeat offenders. if g.errors > 3: continue try: res = g.check_goal(self, time) if res: return res except: stacktrace = traceback.format_exc() g.errors += 1 g.lastError = stacktrace #If there's an error, print to the log, mark the goal, and continue with the next goal #Some goals have a "str" attribute which represents the constructor; if so use that if hasattr(g, "str"): goalstring = g.str else: goalstring = g.__class__.__name__ if hasattr(self, "name"): print("Error in NPC with id " + self.id + " of type " + str(self.type) + " and name '" + self.name + "' when checking goal " + goalstring + "\n" + stacktrace) else: print("Error in NPC with id " + self.id + " of type " + str(self.type) + " when checking goal " + goalstring + "\n" + stacktrace) continue # if res!=None: return res def teach_children(self, child): res = Oplist() locations = self.knowledge.get('location') for k in list(locations.keys()): es = Entity(verb='know', subject=k, object=locations[k]) res.append(Operation('say', es, to=child)) places = self.knowledge.get('place') for k in list(places.keys()): es = Entity(verb='know', subject=k, object=places[k]) res.append(Operation('say', es, to=child)) for g in self.goals: es = Entity(verb='learn', subject=g.key, object=g.str) res.append(Operation('say', es, to=child)) importances = self.knowledge.get('importance') for im in list(importances.keys()): cmp = importances[im] if cmp == '>': s, i = il.importance(im[0], cmp, im[1]) es = Entity(say=s, interlinguish=i) res.append(Operation('say', es, to=child)) return res ########## thinking (needs rewrite) def think(self): if const.debug_thinking: log.thinking("think: " + str(self.id)) output = self.fulfill_goals(self.time) # if output and const.debug_thinking: # log.thinking(str(self)+" result at "+str(self.time)+": "+output[-1][0].description) return output ########## communication: here send it locally def send(self, op): if not self.message_queue: self.message_queue = Oplist(op) else: self.message_queue.append(op) ########## turn to face other entity def face(self, other): vector = distance_to(self.location, other.location) vector.y = 0 if vector.square_mag() < 0.1: return vector = vector.unit_vector() newloc = Location(self.location.parent) newloc.orientation = Quaternion(Vector3D(0, 0, 1), vector, Vector3D(0, 1, 0)) return Operation("move", Entity(self.id, location=newloc)) def address(self, entity_id, message): """Creates a new Talk op which is addressed to an entity""" return Operation('talk', Entity(say=message, address=[entity_id])) def face_and_address(self, entity_id, message): """Utility method for generating ops for both letting the NPC face as well as address another entity. In most cases this is what you want to do when conversing.""" return self.address(entity_id, message) + \ self.face(self.map.get(entity_id))