def test_fast_gradient_sign_method():
    """
    Fast gradient sign method unit test.
    """
    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
    input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
    label = np.asarray([2], np.int32)
    label = np.eye(3)[label].astype(np.float32)

    attack = FastGradientSignMethod(Net())
    ms_adv_x = attack.generate(input_np, label)

    assert np.any(ms_adv_x != input_np), 'Fast gradient sign method: generate' \
                                         ' value must not be equal to' \
                                         ' original value.'
Exemple #2
0
def test_defense_evaluation():
    # load trained network
    current_dir = os.path.dirname(os.path.abspath(__file__))
    ckpt_path = os.path.abspath(
        os.path.join(
            current_dir,
            '../../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
        ))
    wb_net = LeNet5()
    load_dict = load_checkpoint(ckpt_path)
    load_param_into_net(wb_net, load_dict)

    # get test data
    data_list = "../../common/dataset/MNIST/test"
    batch_size = 32
    ds_test = generate_mnist_dataset(data_list, batch_size=batch_size)
    inputs = []
    labels = []
    for data in ds_test.create_tuple_iterator(output_numpy=True):
        inputs.append(data[0].astype(np.float32))
        labels.append(data[1])
    inputs = np.concatenate(inputs).astype(np.float32)
    labels = np.concatenate(labels).astype(np.int32)

    target_label = np.random.randint(0, 10, size=labels.shape[0])
    for idx in range(labels.shape[0]):
        while target_label[idx] == labels[idx]:
            target_label[idx] = np.random.randint(0, 10)
    target_label = np.eye(10)[target_label].astype(np.float32)

    attacked_size = 50
    benign_size = 500

    attacked_sample = inputs[:attacked_size]
    attacked_true_label = labels[:attacked_size]
    benign_sample = inputs[attacked_size:attacked_size + benign_size]

    wb_model = ModelToBeAttacked(wb_net)

    # gen white-box adversarial examples of test data
    loss = SoftmaxCrossEntropyWithLogits(sparse=True)
    wb_attack = FastGradientSignMethod(wb_net, eps=0.3, loss_fn=loss)
    wb_adv_sample = wb_attack.generate(attacked_sample, attacked_true_label)

    wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1)
    accuracy_test = np.mean(
        np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1),
                 attacked_true_label))
    LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s",
                accuracy_test)
    accuracy_adv = np.mean(
        np.equal(np.argmax(wb_raw_preds, axis=1), attacked_true_label))
    LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s",
                accuracy_adv)

    # improve the robustness of model with white-box adversarial examples
    opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09)

    nad = NaturalAdversarialDefense(wb_net,
                                    loss_fn=loss,
                                    optimizer=opt,
                                    bounds=(0.0, 1.0),
                                    eps=0.3)
    wb_net.set_train(False)
    nad.batch_defense(inputs[:5000], labels[:5000], batch_size=32, epochs=10)

    wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy()
    wb_def_preds = softmax(wb_def_preds, axis=1)
    accuracy_def = np.mean(
        np.equal(np.argmax(wb_def_preds, axis=1), attacked_true_label))
    LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def)

    # calculate defense evaluation metrics for defense against white-box attack
    wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds,
                                      attacked_true_label)
    LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack')
    LOGGER.info(
        TAG, 'classification accuracy variance (CAV) is : {:.2f}'.format(
            wb_def_evaluate.cav()))
    LOGGER.info(
        TAG, 'classification rectify ratio (CRR) is : {:.2f}'.format(
            wb_def_evaluate.crr()))
    LOGGER.info(
        TAG, 'classification sacrifice ratio (CSR) is : {:.2f}'.format(
            wb_def_evaluate.csr()))
    LOGGER.info(
        TAG, 'classification confidence variance (CCV) is : {:.2f}'.format(
            wb_def_evaluate.ccv()))
    LOGGER.info(
        TAG, 'classification output stability is : {:.2f}'.format(
            wb_def_evaluate.cos()))

    # calculate defense evaluation metrics for defense against black-box attack
    LOGGER.info(TAG, 'defense evaluation for black-box adversarial attack')
    bb_raw_preds = []
    bb_def_preds = []
    raw_query_counts = []
    raw_query_time = []
    def_query_counts = []
    def_query_time = []
    def_detection_counts = []

    # gen black-box adversarial examples of test data
    bb_net = LeNet5()
    load_param_into_net(bb_net, load_dict)
    bb_model = ModelToBeAttacked(bb_net, defense=False)
    attack_rm = GeneticAttack(model=bb_model,
                              pop_size=6,
                              mutation_rate=0.05,
                              per_bounds=0.5,
                              step_size=0.25,
                              temp=0.1,
                              sparse=False)
    attack_target_label = target_label[:attacked_size]
    true_label = labels[:attacked_size + benign_size]
    # evaluate robustness of original model
    # gen black-box adversarial examples of test data
    for idx in range(attacked_size):
        raw_st = time.time()
        _, raw_a, raw_qc = attack_rm.generate(
            np.expand_dims(attacked_sample[idx], axis=0),
            np.expand_dims(attack_target_label[idx], axis=0))
        raw_t = time.time() - raw_st
        bb_raw_preds.extend(softmax(bb_model.predict(raw_a), axis=1))
        raw_query_counts.extend(raw_qc)
        raw_query_time.append(raw_t)

    for idx in range(benign_size):
        raw_st = time.time()
        bb_raw_pred = softmax(bb_model.predict(
            np.expand_dims(benign_sample[idx], axis=0)),
                              axis=1)
        raw_t = time.time() - raw_st
        bb_raw_preds.extend(bb_raw_pred)
        raw_query_counts.extend([0])
        raw_query_time.append(raw_t)

    accuracy_test = np.mean(
        np.equal(np.argmax(bb_raw_preds[0:len(attack_target_label)], axis=1),
                 np.argmax(attack_target_label, axis=1)))
    LOGGER.info(TAG, "attack success before adv defense is : %s",
                accuracy_test)

    # improve the robustness of model with similarity-based detector
    bb_def_model = ModelToBeAttacked(bb_net,
                                     defense=True,
                                     train_images=inputs[0:6000])
    # attack defensed model
    attack_dm = GeneticAttack(model=bb_def_model,
                              pop_size=6,
                              mutation_rate=0.05,
                              per_bounds=0.5,
                              step_size=0.25,
                              temp=0.1,
                              sparse=False)
    for idx in range(attacked_size):
        def_st = time.time()
        _, def_a, def_qc = attack_dm.generate(
            np.expand_dims(attacked_sample[idx], axis=0),
            np.expand_dims(attack_target_label[idx], axis=0))
        def_t = time.time() - def_st
        det_res = bb_def_model.get_detected_result()
        def_detection_counts.append(np.sum(det_res[-def_qc[0]:]))
        bb_def_preds.extend(softmax(bb_def_model.predict(def_a), axis=1))
        def_query_counts.extend(def_qc)
        def_query_time.append(def_t)

    for idx in range(benign_size):
        def_st = time.time()
        bb_def_pred = softmax(bb_def_model.predict(
            np.expand_dims(benign_sample[idx], axis=0)),
                              axis=1)
        def_t = time.time() - def_st
        det_res = bb_def_model.get_detected_result()
        def_detection_counts.append(np.sum(det_res[-1]))
        bb_def_preds.extend(bb_def_pred)
        def_query_counts.extend([0])
        def_query_time.append(def_t)

    accuracy_adv = np.mean(
        np.equal(np.argmax(bb_def_preds[0:len(attack_target_label)], axis=1),
                 np.argmax(attack_target_label, axis=1)))
    LOGGER.info(TAG, "attack success rate after adv defense is : %s",
                accuracy_adv)

    bb_raw_preds = np.array(bb_raw_preds).astype(np.float32)
    bb_def_preds = np.array(bb_def_preds).astype(np.float32)
    # check evaluate data
    max_queries = 6000

    def_evaluate = BlackDefenseEvaluate(bb_raw_preds, bb_def_preds,
                                        np.array(raw_query_counts),
                                        np.array(def_query_counts),
                                        np.array(raw_query_time),
                                        np.array(def_query_time),
                                        np.array(def_detection_counts),
                                        true_label, max_queries)

    LOGGER.info(
        TAG, 'query count variance of adversaries is : {:.2f}'.format(
            def_evaluate.qcv()))
    LOGGER.info(
        TAG, 'attack success rate variance of adversaries '
        'is : {:.2f}'.format(def_evaluate.asv()))
    LOGGER.info(
        TAG, 'false positive rate (FPR) of the query-based detector '
        'is : {:.2f}'.format(def_evaluate.fpr()))
    LOGGER.info(
        TAG, 'the benign query response time variance (QRV) '
        'is : {:.2f}'.format(def_evaluate.qrv()))