Exemple #1
0
 def __init__(self,
              size=256,
              batch_size=16,
              image_size=(96, ),
              num_classes=16,
              random_offset=0):
     """init"""
     self.size = size
     self.rank_batch_size = batch_size
     self.total_batch_size = self.rank_batch_size
     self.random_offset = random_offset
     self.image_size = image_size
     self.num_classes = num_classes
     self.num_epochs = -1
     self.rank_size = 1
     self.rank_id = 0
     self.batch_index = 0
     self.image_data_type = np.float32
     self.label_data_type = np.float32
     self.is_onehot = True
     init(backend_name='hccl')
     self.rank_size = get_group_size()
     self.rank_id = get_rank()
     self.total_batch_size = self.rank_batch_size * self.rank_size
     self.total_batch_data_size = (self.rank_size,
                                   self.rank_batch_size) + image_size
     self.do_copy = False
Exemple #2
0
def get_bprop_all_gather(self):
    """Generate bprop for AllGather"""
    fusion = self.get_attr_dict()["fusion"]
    if fusion == 0:
        reduce_scatter = ReduceScatter(ReduceOp.SUM, self.group)
        if self.instance_name:
            instance_name = "grad_" + self.instance_name
            reduce_scatter.set_prim_instance_name(instance_name)
    else:
        all_reduce = AllReduce(ReduceOp.SUM,
                               self.group).add_prim_attr("fusion", fusion)
        if self.instance_name:
            instance_name = "grad_" + self.instance_name
            all_reduce.set_prim_instance_name(instance_name)
        rank = get_rank(self.group)
        dev_num = get_group_size(self.group)
        split = P.Split(output_num=dev_num)
        mean_flag = self.get_attr_dict()["mean_flag"]
        scale = 1 / self.rank_size

    def bprop(x, out, dout):
        if fusion == 0:
            dx = reduce_scatter(dout)
        else:
            grad = all_reduce(dout)
            dx = split(grad)[rank]
            if mean_flag:
                dx = F.tensor_mul(dx, scale)
        return (dx, )

    return bprop
Exemple #3
0
def get_bprop_mini_step_all_gather(self):
    """Generate bprop for _MiniStepAllGather"""
    fusion = self.get_attr_dict()["fusion"]
    mean_flag = self.get_attr_dict()["mean_flag"]
    do_mirror = self.get_attr_dict()["do_mirror"]
    scale = 1 / self.rank_size
    all_reduce = AllReduce(ReduceOp.SUM,
                           self.group).add_prim_attr("fusion", fusion)
    if self.instance_name:
        instance_name = "grad_" + self.instance_name
        all_reduce.set_prim_instance_name(instance_name)
    rank = get_rank(self.group)
    dev_num = get_group_size(self.group)
    split = P.Split(output_num=dev_num)

    def bprop(x, z, out, dout):
        if do_mirror:
            if mean_flag:
                z = F.depend(z, F.assign_add(z, dout))
                grad = all_reduce(z)
                dx = split(grad)[rank]
                dx = F.tensor_mul(dx, scale)
            else:
                z = F.depend(z, F.assign_add(z, dout))
                grad = all_reduce(z)
                dx = split(grad)[rank]
        else:
            dx = dout
        return (dx, zeros_like(z))

    return bprop
def create_dataset(data_path,
                   repeat_num=1,
                   batch_size=32,
                   rank_id=0,
                   rank_size=1):
    """create dataset"""
    resize_height = 224
    resize_width = 224
    rescale = 1.0 / 255.0
    shift = 0.0

    # get rank_id and rank_size
    rank_id = get_rank()
    rank_size = get_group_size()
    data_set = ds.Cifar10Dataset(data_path,
                                 num_shards=rank_size,
                                 shard_id=rank_id)

    # define map operations
    random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4))
    random_horizontal_op = vision.RandomHorizontalFlip()
    resize_op = vision.Resize((resize_height, resize_width))
    rescale_op = vision.Rescale(rescale, shift)
    normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914),
                                    (0.2010, 0.1994, 0.2023))
    changeswap_op = vision.HWC2CHW()
    type_cast_op = C.TypeCast(mstype.int32)

    c_trans = [random_crop_op, random_horizontal_op]
    c_trans += [resize_op, rescale_op, normalize_op, changeswap_op]

    # apply map operations on images
    data_set = data_set.map(operations=type_cast_op, input_columns="label")
    data_set = data_set.map(operations=c_trans, input_columns="image")

    # apply shuffle operations
    data_set = data_set.shuffle(buffer_size=10)

    # apply batch operations
    data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)

    # apply repeat operations
    data_set = data_set.repeat(repeat_num)

    return data_set
Exemple #5
0
def inception_v4_train():
    """
    Train Inceptionv4 in data parallelism
    """
    print('epoch_size: {} batch_size: {} class_num {}'.format(config.epoch_size, config.batch_size, config.num_classes))

    context.set_context(mode=context.GRAPH_MODE, device_target=args.platform)
    if args.platform == "Ascend":
        context.set_context(device_id=args.device_id)
        context.set_context(enable_graph_kernel=False)

    rank = 0
    if device_num > 1:
        if args.platform == "Ascend":
            init(backend_name='hccl')
        elif args.platform == "GPU":
            init()
        else:
            raise ValueError("Unsupported device target.")

        rank = get_rank()
        context.set_auto_parallel_context(device_num=device_num,
                                          parallel_mode=ParallelMode.DATA_PARALLEL,
                                          gradients_mean=True,
                                          all_reduce_fusion_config=[200, 400])

    # create dataset
    train_dataset = create_dataset(dataset_path=args.dataset_path, do_train=True,
                                   repeat_num=1, batch_size=config.batch_size, shard_id=rank)
    train_step_size = train_dataset.get_dataset_size()

    # create model
    net = Inceptionv4(classes=config.num_classes)
    # loss
    loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    # learning rate
    lr = Tensor(generate_cosine_lr(steps_per_epoch=train_step_size, total_epochs=config.epoch_size))

    decayed_params = []
    no_decayed_params = []
    for param in net.trainable_params():
        if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
            decayed_params.append(param)
        else:
            no_decayed_params.append(param)
    for param in net.trainable_params():
        if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
            param.set_data(initializer(XavierUniform(), param.data.shape, param.data.dtype))
    group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
                    {'params': no_decayed_params},
                    {'order_params': net.trainable_params()}]

    opt = RMSProp(group_params, lr, decay=config.decay, epsilon=config.epsilon, weight_decay=config.weight_decay,
                  momentum=config.momentum, loss_scale=config.loss_scale)

    if args.device_id == 0:
        print(lr)
        print(train_step_size)
    if args.resume:
        ckpt = load_checkpoint(args.resume)
        load_param_into_net(net, ckpt)

    loss_scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)


    if args.platform == "Ascend":
        model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc', 'top_1_accuracy', 'top_5_accuracy'},
                      loss_scale_manager=loss_scale_manager, amp_level=config.amp_level)
    elif args.platform == "GPU":
        model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc', 'top_1_accuracy', 'top_5_accuracy'},
                      loss_scale_manager=loss_scale_manager, amp_level='O0')
    else:
        raise ValueError("Unsupported device target.")

    # define callbacks
    performance_cb = TimeMonitor(data_size=train_step_size)
    loss_cb = LossMonitor(per_print_times=train_step_size)
    ckp_save_step = config.save_checkpoint_epochs * train_step_size
    config_ck = CheckpointConfig(save_checkpoint_steps=ckp_save_step, keep_checkpoint_max=config.keep_checkpoint_max)
    ckpoint_cb = ModelCheckpoint(prefix=f"inceptionV4-train-rank{rank}",
                                 directory='ckpts_rank_' + str(rank), config=config_ck)
    callbacks = [performance_cb, loss_cb]
    if device_num > 1 and config.is_save_on_master:
        if args.device_id == 0:
            callbacks.append(ckpoint_cb)
    else:
        callbacks.append(ckpoint_cb)

    # train model
    model.train(config.epoch_size, train_dataset, callbacks=callbacks, dataset_sink_mode=True)