Exemple #1
0
def test_spares_proximal_ada_grad_compile():
    """ test sparse proximal_ada_grad compile """
    indices = Tensor(np.array([0, 1]).astype(np.int32))
    label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
    net = NetWithSparseGatherV2()
    net.set_train()

    optimizer = ProximalAdagrad(net.trainable_params(), weight_decay=0.9, loss_scale=1024.0)
    optimizer.target = 'CPU'
    train_network = TrainOneStepCell(net, optimizer)
    _executor.compile(train_network, indices, label)
Exemple #2
0
def test_proximal_target():
    """ test_proximal_target """
    net = NetWithSparseGatherV2()
    net.set_train()

    optimizer = ProximalAdagrad(net.trainable_params(), weight_decay=0.9, loss_scale=1024.0)
    if optimizer.target not in ('CPU', 'Ascend'):
        raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))
def test_proximal_ada_grad():
    """ test_proximal_ada_grad """
    inputs = Tensor(np.ones([1, 64]).astype(np.float32))
    label = Tensor(np.zeros([1, 10]).astype(np.float32))
    net = Net()
    net.set_train()
    loss = nn.SoftmaxCrossEntropyWithLogits()
    optimizer = ProximalAdagrad(net.trainable_params())
    net_with_loss = WithLossCell(net, loss)
    train_network = TrainOneStepCell(net_with_loss, optimizer)
    _executor.compile(train_network, inputs, label)