def __init__(self, concentration1=None, concentration0=None, seed=None, dtype=mstype.float32, name="Beta"): """ Constructor of Beta. """ param = dict(locals()) param['param_dict'] = { 'concentration1': concentration1, 'concentration0': concentration0 } valid_dtype = mstype.float_type Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__) # As some operators can't accept scalar input, check the type here if isinstance(concentration0, float): raise TypeError("Input concentration0 can't be scalar") if isinstance(concentration1, float): raise TypeError("Input concentration1 can't be scalar") super(Beta, self).__init__(seed, dtype, name, param) self._concentration1 = self._add_parameter(concentration1, 'concentration1') self._concentration0 = self._add_parameter(concentration0, 'concentration0') if self._concentration1 is not None: check_greater_zero(self._concentration1, "concentration1") if self._concentration0 is not None: check_greater_zero(self._concentration0, "concentration0") # ops needed for the class self.log = log_generic self.log1p = P.Log1p() self.neg = P.Neg() self.pow = P.Pow() self.squeeze = P.Squeeze(0) self.cast = P.Cast() self.fill = P.Fill() self.shape = P.Shape() self.select = P.Select() self.logicaland = P.LogicalAnd() self.greater = P.Greater() self.digamma = nn.DiGamma() self.lbeta = nn.LBeta()
def __init__(self, concentration=None, rate=None, seed=None, dtype=mstype.float32, name="Gamma"): """ Constructor of Gamma. """ param = dict(locals()) param['param_dict'] = {'concentration': concentration, 'rate': rate} valid_dtype = mstype.float_type Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__) # As some operators can't accept scalar input, check the type here if isinstance(concentration, (int, float)): raise TypeError("Input concentration can't be scalar") if isinstance(rate, (int, float)): raise TypeError("Input rate can't be scalar") super(Gamma, self).__init__(seed, dtype, name, param) self._concentration = self._add_parameter(concentration, 'concentration') self._rate = self._add_parameter(rate, 'rate') if self._concentration is not None: check_greater_zero(self._concentration, "concentration") if self._rate is not None: check_greater_zero(self._rate, "rate") # ops needed for the class self.log = log_generic self.square = P.Square() self.sqrt = P.Sqrt() self.squeeze = P.Squeeze(0) self.cast = P.Cast() self.dtypeop = P.DType() self.fill = P.Fill() self.shape = P.Shape() self.select = P.Select() self.greater = P.Greater() self.lgamma = nn.LGamma() self.digamma = nn.DiGamma() self.igamma = nn.IGamma()
'skip': ['backward']}), ('ReduceLogSumExp', { 'block': nn.ReduceLogSumExp((0,), False), 'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))], 'skip': ['backward']}), ('LGamma', { 'block': nn.LGamma(), 'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))], 'skip': ['backward']}), ('IGamma', { 'block': nn.IGamma(), 'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32)), Tensor(np.array([3, 4, 5, 6]).astype(np.float32))], 'skip': ['backward']}), ('DiGamma', { 'block': nn.DiGamma(), 'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))], 'skip': ['backward']}), ('LBeta', { 'block': nn.LBeta(), 'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32)), Tensor(np.array([3, 4, 5, 6]).astype(np.float32))], 'skip': ['backward']}), ('FlattenNet', { 'block': FlattenNet(), 'desc_inputs': [Tensor(np.ones([1, 2, 3, 4], np.float32))], }), ('PReLUNet', { 'block': PReLUNet(), 'desc_inputs': [Tensor(np.ones([1, 3, 4, 4], np.float32))], }),