'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]], 'desc_bprop': [[2592, 2048, 4, 4]]}), ('SigmoidCrossEntropyWithLogits', { 'block': P.SigmoidCrossEntropyWithLogits(), 'desc_inputs': [[128, 10], [128, 10]], 'desc_bprop': [[128, 10]]}), ('Pad', { 'block': P.Pad(((1, 2), (2, 3))), 'desc_inputs': [[7, 7]], 'desc_bprop': [[10, 12]]}), ('BinaryCrossEntropy', { 'block': P.BinaryCrossEntropy(), 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]], 'desc_bprop': []}), ('SparseApplyAdagrad', { 'block': P.SparseApplyAdagrad(0.5), 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))], 'desc_bprop': [3, 3], 'skip': ['backward']}), ('Flatten_1', { 'block': NetForFlatten(), 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))], 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))], 'skip': ['backward']}), ('Flatten_2', { 'block': NetForFlatten(), 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))], 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))], 'skip': ['backward']}), ('ArgmaxNet', { 'block': ArgmaxNet(),
def __init__(self, var, accum): super(SparseApplyAdagradNet, self).__init__() self.sparse_apply_adagrad = P.SparseApplyAdagrad(lr=0.01) self.var = Parameter(var, name="var") self.accum = Parameter(accum, name="accum")