Exemple #1
0
def contours(table, params):
    extractor = DBExtractor(table)
    for par_limit, contour_param in zip(["gamma", "rv"], ["rv", "gamma"]):
        fixed_params = {"teff_1": params["teff"], "logg_1": params["logg"], "feh_1": params["fe_h"],
                        "logg_2": params["logg"], "feh_2": params["fe_h"]}
        for chi2_val, npix_val in zip(chi2_names, npix_names):
            df_min_chi2 = extractor.minimum_value_of(chi2_val)

            fixed_params.update({par_limit: float(df_min_chi2[par_limit][0])})
            df = extractor.fixed_extraction(columns=["teff_2", "rv", "gamma", chi2_val],
                                            fixed=fixed_params)

            params["this_npix"] = params["npix"][npix_val]
            params["par_limit"] = par_limit

            pars = [contour_param, "teff_2", chi2_val]
            dataframe_contour(df, xcol=pars[0], ycol=pars[1], zcol=pars[2], params=params)

    # Using Reduced chi2 value
    for par_limit, contour_param in zip(["gamma", "rv"], ["rv", "gamma"]):
        fixed_params = {"teff_1": params["teff"], "logg_1": params["logg"], "feh_1": params["fe_h"],
                        "logg_2": params["logg"], "feh_2": params["fe_h"]}
        for chi2_val, npix_val in zip(chi2_names, npix_names):
            red_chi2 = "red_{0}".format(chi2_val)

            df_min_chi2 = extractor.minimum_value_of(chi2_val)
            fixed_params.update({par_limit: float(df_min_chi2[par_limit][0])})
            df = extractor.fixed_extraction(columns=["teff_2", "rv", "gamma", chi2_val],
                                            fixed=fixed_params)

            df[red_chi2] = reduced_chi_squared(df[chi2_val], params["npix"][npix_val], params["npars"])

            params["this_npix"] = params["npix"][npix_val]
            params["par_limit"] = par_limit

            pars = [contour_param, "teff_2", red_chi2]
            dataframe_contour(df, xcol=pars[0], ycol=pars[1], zcol=pars[2], params=params)

    # Using teff_1 contour
    for par_limit, contour_param in zip(["gamma", "rv"], ["rv", "gamma"]):
        fixed_params = {"logg_1": params["logg"], "feh_1": params["fe_h"],
                        "logg_2": params["logg"], "feh_2": params["fe_h"]}
        for chi2_val, npix_val in zip(chi2_names, npix_names):
            df_min_chi2 = extractor.minimum_value_of(chi2_val)
            fixed_params.update({par_limit: df_min_chi2[par_limit].values[0],
                                 "teff_2": df_min_chi2["teff_2"].values[0]})
            df = extractor.fixed_extraction(columns=["teff_1", "rv", "gamma", chi2_val],
                                            fixed=fixed_params)

            params["this_npix"] = params["npix"][npix_val]
            params["par_limit"] = par_limit

            pars = [contour_param, "teff_1", chi2_val]
            dataframe_contour(df, xcol=pars[0], ycol=pars[1], zcol=pars[2], params=params)
Exemple #2
0
def contrast_iam_results(table, params):
    extractor = DBExtractor(table)
    star_name = params["star"]
    obsnum = params["obsnum"]
    ___, host_params, ___ = iam_helper_function(star_name, obsnum, 1)
    h_temp, h_logg, h_feh = host_params['temp'], host_params['logg'], host_params["fe_h"]
    c_temp = host_params.get("comp_temp")

    print(
        "Observation {4} - {5}\n"
        "Expected Parameters\n---------------------\n"
        "teff={0:5.0f}  logg={1:3.02f}  feh={2:4.01f} \tcompanion_temp={3:5.0f} ".format(h_temp, h_logg, h_feh, c_temp,
                                                                                         star_name, obsnum))

    print("IAM SOLUTIONS\n---------------------")
    for ii, chi2_val in enumerate(chi2_names):
        df = extractor.minimum_value_of(chi2_val)
        print(
            "{0:10} solution:\nCompanion: teff_2={1:5.0f}  logg2={2:4.02f}  ".format(chi2_val, df.teff_2.values[0],
                                                                                     df.logg_2.values[0]) +
            "feh2={0:4.01f}  gamma={1:4.01f}  rv={2:4.01f}  ".format(df.feh_2.values[0], float(df.gamma.values[0]),
                                                                     float(df.rv.values[0])) +
            "Host: teff={0:5.0f}  logg={1:4.02f}  feh={2:4.01f}  chi2={3:8.02f} median alpha={4:5.03f}".format(
                df.teff_1.values[0],
                df.logg_1.values[0],
                df.feh_1.values[0],
                df[chi2_val].values[0],
                np.median([df["alpha_1"].values[0],
                           df["alpha_2"].values[0],
                           df["alpha_3"].values[0],
                           df["alpha_4"].values[0]])))
Exemple #3
0
def contours(table, params):
    extractor = DBExtractor(table)
    for chi2_val, npix_val in zip(chi2_names, npix_names):
        df_min_chi2 = extractor.minimum_value_of(chi2_val)

        fixed_params = {
            "logg_1": float(df_min_chi2["logg_1"].values[0]),
            "feh_1": float(df_min_chi2["feh_1"].values[0])
        }
        df = extractor.fixed_extraction(
            columns=["teff_1", "feh_1", "logg_1", "gamma", chi2_val],
            fixed=fixed_params)
        params["this_npix"] = params["npix"][npix_val]
        params["chi2_value"] = chi2_val
        pars = ["gamma", "teff_1", chi2_val]
        dataframe_contour(df,
                          xcol=pars[0],
                          ycol=pars[1],
                          zcol=pars[2],
                          params=params)

    # Reduced chi2
    for chi2_val, npix_val in zip(chi2_names, npix_names):
        red_chi2 = "red_{0}".format(chi2_val)
        df_min_chi2 = extractor.minimum_value_of(chi2_val)

        fixed_params = {
            "logg_1": float(df_min_chi2["logg_1"].values[0]),
            "feh_1": float(df_min_chi2["feh_1"].values[0])
        }
        df = extractor.fixed_extraction(
            columns=["teff_1", "feh_1", "logg_1", "gamma", chi2_val],
            fixed=fixed_params)
        df[red_chi2] = reduced_chi_squared(df[chi2_val],
                                           params["npix"][npix_val],
                                           params["npars"])
        params["this_npix"] = params["npix"][npix_val]
        params["chi2_value"] = chi2_val
        pars = ["gamma", "teff_1", red_chi2]
        dataframe_contour(df,
                          xcol=pars[0],
                          ycol=pars[1],
                          zcol=pars[2],
                          params=params)
Exemple #4
0
def contrast_bhm_results(table, params):
    extractor = DBExtractor(table)
    star_name = params["star"]
    obsnum = params["obsnum"]
    ___, host_params, ___ = bhm_helper_function(star_name, obsnum, 1)
    h_temp, h_logg, h_feh = host_params['temp'], host_params[
        'logg'], host_params["fe_h"]

    print(
        "Expected Parameters\n---------------------\nteff={0}\tlogg={1}\tfeh={2}"
        .format(h_temp, h_logg, h_feh))
    print("BHM SOLUTIONS\n---------------------")
    for ii, chi2_val in enumerate(chi2_names):
        df = extractor.minimum_value_of(chi2_val)
        print("{0}: teff={1:5}\tlogg={2:3.02}\t".format(
            chi2_val, df.teff_1.values[0], df.logg_1.values[0]) +
              "feh={0:4.1}\tgamma={1:3.2},\txcorr={2:3.2},\tchi2={3:8.03}".
              format(df.feh_1.values[0], float(df.gamma.values[0]),
                     df.xcorr_1.values[0], df[chi2_val].values[0]))
Exemple #5
0
def compare_spectra(table, params):
    """Plot the min chi2 result against the observations."""
    extractor = DBExtractor(table)
    for ii, chi2_val in enumerate(chi2_names[0:-2]):
        df = extractor.minimum_value_of(chi2_val)
        df = df[["teff_1", "logg_1", "feh_1", "gamma",
                 "teff_2", "logg_2", "feh_2", "rv", chi2_val]]

        params1 = [df["teff_1"].values[0], df["logg_1"].values[0], df["feh_1"].values[0]]
        params2 = [df["teff_2"].values[0], df["logg_2"].values[0], df["feh_2"].values[0]]

        params1 = [float(param1) for param1 in params1]
        params2 = [float(param2) for param2 in params2]

        gamma = df["gamma"].values
        rv = df["rv"].values

        from simulators.iam_module import iam_helper_function
        obs_name, obs_params, output_prefix = iam_helper_function(params["star"], params["obsnum"], ii + 1)

        obs_spec = load_spectrum(obs_name)

        # Mask out bad portion of observed spectra
        # obs_spec = spectrum_masking(obs_spec, params["star"], params["obsnum"], ii + 1)

        # Barycentric correct spectrum
        _obs_spec = barycorr_crires_spectrum(obs_spec, extra_offset=None)
        normalization_limits = [obs_spec.xaxis[0] - 5, obs_spec.xaxis[-1] + 5]
        # models
        # print("params for models", params1, params2)
        mod1 = load_starfish_spectrum(params1, limits=normalization_limits,
                                      hdr=True, normalize=False, area_scale=True,
                                      flux_rescale=True)

        mod2 = load_starfish_spectrum(params2, limits=normalization_limits,
                                      hdr=True, normalize=False, area_scale=True,
                                      flux_rescale=True)

        iam_grid_func = inherent_alpha_model(mod1.xaxis, mod1.flux, mod2.flux,
                                             rvs=rv, gammas=gamma)

        iam_grid_model = iam_grid_func(obs_spec.xaxis).squeeze()
        iam_grid_model_full = iam_grid_func(mod1.xaxis).squeeze()

        model_spec_full = Spectrum(flux=iam_grid_model_full, xaxis=mod1.xaxis)
        model_spec = Spectrum(flux=iam_grid_model, xaxis=obs_spec.xaxis)

        model_spec = model_spec.remove_nans()
        model_spec = model_spec.normalize(method="exponential")
        model_spec_full = model_spec_full.remove_nans()
        model_spec_full = model_spec_full.normalize(method="exponential")

        fig, ax = plt.subplots(1, 1)
        plt.plot(obs_spec.xaxis, obs_spec.flux, label="Observation")
        plt.plot(model_spec.xaxis, model_spec.flux, label="Minimum \chi^2 model")
        plt.plot(model_spec_full.xaxis, model_spec_full.flux, "--", label="Model_full_res")

        plt.legend()

        fig.tight_layout()
        name = "{0}-{1}_{2}_{3}_min_chi2_spectrum_comparison_{4}.png".format(
            params["star"], params["obsnum"], params["chip"], chi2_val, params["suffix"])
        plt.savefig(os.path.join(params["path"], "plots", name))
        plt.close()

        plt.plot(obs_spec.xaxis, obs_spec.flux, label="Observation")
        plt.show()