Exemple #1
0
    def test_from_dict_with_hmm(self):
        for (starting_order, num_states), model in sorted(self.models.items()):
            if starting_order >= 5:
                continue

            state_priors = numpy.random.random(model.low_order_states)
            state_priors /= state_priors.sum()

            trans_probs = numpy.random.random(
                (model.low_order_states, model.low_order_states))
            trans_probs = (trans_probs.T / trans_probs.sum(1)).T

            my_hmm = FirstOrderHMM(state_priors=ArrayFactor(state_priors),
                                   trans_probs=MatrixFactor(trans_probs),
                                   emission_probs=[None] *
                                   model.low_order_states)

            dtmp = {
                "starting_order": starting_order,
                "num_states": num_states,
                "hmm": my_hmm,
            }

            found = ModelReducer._from_dict(dtmp)
            expected = ModelReducer(starting_order, num_states)
            expected.hmm = my_hmm

            for k in ("starting_order", "high_order_states"):
                yield check_equal, getattr(found, k), getattr(expected, k)

            for k in ("trans_probs", "state_priors"):
                yield check_array_equal, getattr(found.hmm,
                                                 k).data, getattr(my_hmm,
                                                                  k).data
Exemple #2
0
    def test_from_dict_no_hmm(self):
        for (starting_order, num_states), model in sorted(self.models.items()):
            dtmp = {
                "starting_order": starting_order,
                "num_states": num_states,
            }
            found = ModelReducer._from_dict(dtmp)
            expected = ModelReducer(starting_order, num_states)

            for k in ("starting_order", "high_order_states"):
                yield check_equal, getattr(found, k), getattr(expected, k)

            yield check_none, found._hmm
Exemple #3
0
 def test_first_order_is_identical(self):
     expected = {(0, ): 0, (1, ): 1, (2, ): 2, (3, ): 3}
     model = ModelReducer(1, 4)
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", UserWarning)
         assert_dict_equal(model.high_states_to_low, expected)
         assert_dict_equal(model.low_states_to_high, self.revdict(expected))
Exemple #4
0
    def test_transcode_sequence(self):
        testseq = ["A", "B", "C", "D", "E"]
        expected = numpy.arange(5)
        dtmp = {K: V for K, V in zip(testseq, expected)}

        found = ModelReducer.transcode_sequence(testseq, dtmp)
        yield check_array_equal, found, expected
Exemple #5
0
    def test_remap_from_first_order(self):
        # test parameter remapping by asserting that log probabilities of observation sequences
        # from remapped high-order mdodels match those of low order models

        models = {
            2: get_dirty_casino(),
            4: get_fourstate_poisson(),
        }

        for num_states, native_model in sorted(models.items()):
            seqs = [native_model.generate(200)[1] for _ in range(5)]
            for starting_order in 2, 3, 4, 5:
                mod = ModelReducer(starting_order, num_states)
                trans_model = mod.remap_from_first_order(native_model)

                for my_obs in seqs:
                    native_logprob = native_model.logprob(my_obs)
                    trans_logprob = native_model.logprob(my_obs)

                    yield check_almost_equal, native_logprob, trans_logprob
Exemple #6
0
    def test_transcode_sequences(self):
        testseqs = [["A", "B", "C", "D", "E"], ["D", "B", "A", "A"]]

        expected = [numpy.arange(5), numpy.array([3, 1, 0, 0])]

        dtmp = {K: V for K, V in zip(testseqs[0], expected[0])}

        found = ModelReducer.transcode_sequences(testseqs, dtmp)
        yield check_equal, len(found), len(expected)
        for my_found, my_expected in zip(found, expected):
            yield check_array_equal, my_found, my_expected
Exemple #7
0
 def test_get_emission_mapping(self):
     cases = {
         (2, 2): numpy.tile(range(2), 3),
         (2, 3): numpy.tile(range(3), 4),
         (2, 4): numpy.tile(range(4), 5),
         (3, 2): numpy.tile(range(2), 7),
         (3, 3): numpy.tile(range(3), 13),
         (3, 4): numpy.tile(range(4), 21),
         (4, 2): numpy.tile(range(2), 15),
         (4, 3): numpy.tile(range(3), 40),
         (4, 4): numpy.tile(range(4), 85),
     }
     for (order, states), expected in sorted(cases.items()):
         found = ModelReducer(order, states).get_emission_mapping()
         yield check_array_equal, expected, found
Exemple #8
0
    def setUpClass(cls):
        cls.models = {}
        cls.max_order = 6
        cls.max_states = 7
        for num_states in range(2, cls.max_states):
            for starting_order in range(1, cls.max_order):
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    model = ModelReducer(starting_order, num_states)
                    cls.models[(starting_order, num_states)] = model

        cls.sequences = [
            [0, 2, 0, 5, 2, 2, 4, 2, 4, 1],
        ]

        # expected tuples for each seq in cls.sequences
        # when moving in model order K
        cls.expected_tuples = {
            2: [
                [(-1, 0), (0, 2), (2, 0), (0, 5), (5, 2), (2, 2), (2, 4),
                 (4, 2), (2, 4), (4, 1)],
            ],
            3: [
                [
                    (-2, -1, 0),
                    (-1, 0, 2),
                    (0, 2, 0),
                    (2, 0, 5),
                    (0, 5, 2),
                    (5, 2, 2),
                    (2, 2, 4),
                    (2, 4, 2),
                    (4, 2, 4),
                    (2, 4, 1),
                ],
            ],
            4: [
                [
                    (-3, -2, -1, 0),
                    (-2, -1, 0, 2),
                    (-1, 0, 2, 0),
                    (0, 2, 0, 5),
                    (2, 0, 5, 2),
                    (0, 5, 2, 2),
                    (5, 2, 2, 4),
                    (2, 2, 4, 2),
                    (2, 4, 2, 4),
                    (4, 2, 4, 1),
                ],
            ],
            5: [
                [
                    (-4, -3, -2, -1, 0),
                    (-3, -2, -1, 0, 2),
                    (-2, -1, 0, 2, 0),
                    (-1, 0, 2, 0, 5),
                    (0, 2, 0, 5, 2),
                    (2, 0, 5, 2, 2),
                    (0, 5, 2, 2, 4),
                    (5, 2, 2, 4, 2),
                    (2, 2, 4, 2, 4),
                    (2, 4, 2, 4, 1),
                ],
            ],
        }

        # keys are (num_states, model_order)
        cls.expected_high_states_to_low = {
            (4, 2): {
                # created by adding new start state
                (-1, 0): 0,
                (-1, 1): 1,
                (-1, 2): 2,
                (-1, 3): 3,

                # represented
                (0, 0): 4,
                (0, 1): 5,
                (0, 2): 6,
                (0, 3): 7,
                (1, 0): 8,
                (1, 1): 9,
                (1, 2): 10,
                (1, 3): 11,
                (2, 0): 12,
                (2, 1): 13,
                (2, 2): 14,
                (2, 3): 15,
                (3, 0): 16,
                (3, 1): 17,
                (3, 2): 18,
                (3, 3): 19,
            },
            (4, 3): {
                # created from new start states
                (-2, -1, 0): 0,
                (-2, -1, 1): 1,
                (-2, -1, 2): 2,
                (-2, -1, 3): 3,
                (-1, 0, 0): 4,
                (-1, 0, 1): 5,
                (-1, 0, 2): 6,
                (-1, 0, 3): 7,
                (-1, 1, 0): 8,
                (-1, 1, 1): 9,
                (-1, 1, 2): 10,
                (-1, 1, 3): 11,
                (-1, 2, 0): 12,
                (-1, 2, 1): 13,
                (-1, 2, 2): 14,
                (-1, 2, 3): 15,
                (-1, 3, 0): 16,
                (-1, 3, 1): 17,
                (-1, 3, 2): 18,
                (-1, 3, 3): 19,

                # actual states
                (0, 0, 0): 20,
                (0, 0, 1): 21,
                (0, 0, 2): 22,
                (0, 0, 3): 23,
                (0, 1, 0): 24,
                (0, 1, 1): 25,
                (0, 1, 2): 26,
                (0, 1, 3): 27,
                (0, 2, 0): 28,
                (0, 2, 1): 29,
                (0, 2, 2): 30,
                (0, 2, 3): 31,
                (0, 3, 0): 32,
                (0, 3, 1): 33,
                (0, 3, 2): 34,
                (0, 3, 3): 35,
                (1, 0, 0): 36,
                (1, 0, 1): 37,
                (1, 0, 2): 38,
                (1, 0, 3): 39,
                (1, 1, 0): 40,
                (1, 1, 1): 41,
                (1, 1, 2): 42,
                (1, 1, 3): 43,
                (1, 2, 0): 44,
                (1, 2, 1): 45,
                (1, 2, 2): 46,
                (1, 2, 3): 47,
                (1, 3, 0): 48,
                (1, 3, 1): 49,
                (1, 3, 2): 50,
                (1, 3, 3): 51,
                (2, 0, 0): 52,
                (2, 0, 1): 53,
                (2, 0, 2): 54,
                (2, 0, 3): 55,
                (2, 1, 0): 56,
                (2, 1, 1): 57,
                (2, 1, 2): 58,
                (2, 1, 3): 59,
                (2, 2, 0): 60,
                (2, 2, 1): 61,
                (2, 2, 2): 62,
                (2, 2, 3): 63,
                (2, 3, 0): 64,
                (2, 3, 1): 65,
                (2, 3, 2): 66,
                (2, 3, 3): 67,
                (3, 0, 0): 68,
                (3, 0, 1): 69,
                (3, 0, 2): 70,
                (3, 0, 3): 71,
                (3, 1, 0): 72,
                (3, 1, 1): 73,
                (3, 1, 2): 74,
                (3, 1, 3): 75,
                (3, 2, 0): 76,
                (3, 2, 1): 77,
                (3, 2, 2): 78,
                (3, 2, 3): 79,
                (3, 3, 0): 80,
                (3, 3, 1): 81,
                (3, 3, 2): 82,
                (3, 3, 3): 83
            },
        }
Exemple #9
0
 def test_revive_from_json(self):
     for k, v in self.models.items():
         enc = v.to_json()
         dec = ModelReducer.from_json(enc)
         yield check_equal, v, dec