Exemple #1
0
def sat_kb(kb, val, var_list):
    """ Check a valuation satisfies a classical KB
     return true if val satisfies KB
    """
    solver = minisolvers.MinisatSolver()
    new_kb = kb.copy()
    for i in range(len(kb)):
        tree = create_tree(kb[i])
        tree = conv_impl(tree)
        tree = prop_neg(tree)
        tree = conv_orOfAnd(tree)
        new_kb[i]=tree.inorder()
    
    val_s = []
    for i in range(len(val)):
        if val[i] =="0":
            val_s.append("-"+var_list[i])
        else:
            val_s.append(var_list[i])
    val="&".join(val_s)
    new_kb.append(val)
    clauses = sat_format(new_kb,var_list)

    for i in range(len(var_list)):
        solver.new_var()
    for clause in clauses:
        solver.add_clause(clause)
    return solver.solve()
Exemple #2
0
def checkInterpretations(interpretations, knowB):
    """Checks if given interpretations are consistent with a given knowledge base .
       Returns True if it does."""
    inte = conversion.SATSolverFormat(interpretations)
    kb = knowB
    m = minisolvers.MinisatSolver()
    uniqueVar = conversion.noOfUniqueAtomsLetters(kb)
    KBno = conversion.SATSolverFormat(kb)
    for i in range(uniqueVar):
        m.new_var()

    for clause in KBno:
        m.add_clause(clause)

    for clause2 in inte:
        m.add_clause(clause2)

    if (m.solve()):
        return True
    else:
        return False
Exemple #3
0
def checkInterpretationsLM(interpretations, knowB, letters):
    """Checks if given interpretations are consistent with a given knowledge base.
       also takes a list of unique letters as input as well. Returns True if it is"""
    inte = conversion.SATSolverFormatLM(interpretations, letters)
    kb = knowB
    Letters = letters
    m = minisolvers.MinisatSolver()
    KBno = conversion.SATSolverFormatLM(kb, Letters)
    for i in range(len(Letters)):
        m.new_var()

    for clause in KBno:
        m.add_clause(clause)

    for clause2 in inte:
        m.add_clause(clause2)

    if (m.solve()):
        return True
    else:
        return False
Exemple #4
0
def entail(s, val, var_list):
    """ Returns true if a statement is entailed by a valuation
    """
    solver = minisolvers.MinisatSolver()
    s = create_tree(s)
    s = conv_impl(s)
    s = negate(s)
    s = conv_orOfAnd(s)
    s = s.inorder()
    val_s = []
    for i in range(len(val)):
        if val[i] =="0":
            val_s.append("-"+var_list[i])
        else:
            val_s.append(var_list[i])
    val="&".join(val_s)
    kb= [s] + [val]
    clauses = sat_format(kb,var_list)
    for i in range(len(var_list)):
        solver.new_var()
    for clause in clauses:
        solver.add_clause(clause)
    return not solver.solve()
Exemple #5
0
def checkEntailment(knowB, sentence):
    """Checks Classical Entailment without a Ranked Model. Returns True if it does entail"""
    KB = knowB
    uniqueVar = conversion.noOfUniqueAtomsLetters(KB)
    KBno = conversion.SATSolverFormat(KB)
    sen = sentence
    uni = conversion.listOfUniqueAtomsLetters(KB)
    Ent = minisolvers.MinisatSolver()
    uniNo = conversion.convertLettersListToNo(uni)
    check = addNegation(sen, uniNo, uni)  #Sentence being checked is negated
    for i in check:  #Check is already in SAT-SOlver format
        KBno.append(i)

    for i in range(uniqueVar):
        Ent.new_var()

    for clause in KBno:
        Ent.add_clause(clause)

    if (Ent.solve()):
        return False
    else:
        return True
 def setUp(self):
     self.solver = minisolvers.MinisatSolver()
     self.clauses = [ [1], [-2], [3, 4], [-3, 5], [-4, 6], [-5, 4], [-6] ]
     self.numvars = max([max(cl) for cl in [[abs(x) for x in cl] for cl in self.clauses]])
Exemple #7
0
 def __init__(self):
     super().__init__()
     self._solver = minisolvers.MinisatSolver()
Exemple #8
0
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 18 13:21:12 2018

@author: Guy
"""

import conversion
import minisolvers
import itertools

S = minisolvers.MinisatSolver()


def createRankedModel(knowB):
    """Takes in a knowledge base as input and returns the LM-Minimal Ranked model
       that the LM Algorithm produces and returns it as a dictionary"""
    #Initialising Variables
    KB = knowB
    letters = conversion.listOfUniqueAtomsLetters(KB)
    interpretations = createInterpretations(KB)
    rankedModel = {}
    rankedModel[0] = interpretations

    if (len(rankedModel) == 1):  #The First Level
        rankedModel[1] = moveInterpretations(
            rankedModel[0], KB)  #Moving interpretations up a level
        rankedModel[0] = removeContradictoryInterpretations(
            rankedModel[0], KB)  #Keeping the consistent ones
    if (len(rankedModel) > 1):
        counter = 1  # Represents level