def main(iargs=None): inps = cmd_line_parse(iargs) inps = read_network_info(inps) # Plot if not inps.disp_fig: plt.switch_backend('Agg') inps.cbar_label = 'Average Spatial Coherence' figNames = [i+inps.fig_ext for i in ['BperpHistory', 'CoherenceMatrix', 'CoherenceHistory', 'Network']] # Fig 1 - Baseline History fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_perp_baseline_hist(ax, inps.dateList, inps.pbaseList, vars(inps), inps.dateList_drop) if inps.save_fig: fig.savefig(figNames[0], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[0])) if inps.cohList is not None: # Fig 2 - Coherence Matrix fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_coherence_matrix(ax, inps.date12List, inps.cohList, inps.date12List_drop, plot_dict=vars(inps))[0] if inps.save_fig: fig.savefig(figNames[1], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[1])) # Fig 3 - Min/Max Coherence History fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_coherence_history(ax, inps.date12List, inps.cohList, plot_dict=vars(inps)) if inps.save_fig: fig.savefig(figNames[2], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[2])) # Fig 4 - Interferogram Network fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_network(ax, inps.date12List, inps.dateList, inps.pbaseList, vars(inps), inps.date12List_drop) if inps.save_fig: fig.savefig(figNames[3], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[3])) if inps.disp_fig: print('showing ...') plt.show()
def main(iargs=None): inps = cmd_line_parse(iargs) # Plot inps.cbar_label = 'Average Spatial Coherence' figNames = [i+'.pdf' for i in ['BperpHistory', 'CoherenceMatrix', 'CoherenceHistory', 'Network']] # Fig 1 - Baseline History fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_perp_baseline_hist(ax, inps.dateList, inps.pbaseList, vars(inps), inps.dateList_drop) if inps.save_fig: fig.savefig(figNames[0], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[0])) if inps.cohList is not None: # Fig 2 - Coherence Matrix fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_coherence_matrix(ax, inps.date12List, inps.cohList, inps.date12List_drop, plot_dict=vars(inps))[0] if inps.save_fig: fig.savefig(figNames[1], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[1])) # Fig 3 - Min/Max Coherence History fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_coherence_history(ax, inps.date12List, inps.cohList, plot_dict=vars(inps)) if inps.save_fig: fig.savefig(figNames[2], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[2])) # Fig 4 - Interferogram Network fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_network(ax, inps.date12List, inps.dateList, inps.pbaseList, vars(inps), inps.date12List_drop) if inps.save_fig: fig.savefig(figNames[3], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[3])) if inps.disp_fig: print('showing ...') plt.show()
def plot_network_info(inps): if not inps.disp_fig: plt.switch_backend('Agg') out_fig_name = os.path.join(inps.out_dir, 'network{}'.format(inps.figext)) log('plot network / pairs to file: ' + os.path.basename(out_fig_name)) fig1, ax1 = plt.subplots(figsize=inps.fig_size) ax1 = pp.plot_network(ax1, inps.date12_list, inps.date_list, inps.pbase_list, p_dict=vars(inps), print_msg=False) plt.savefig(out_fig_name, bbox_inches='tight', dpi=inps.figdpi) out_fig_name = os.path.join(inps.out_dir, 'bperpHistory{}'.format(inps.figext)) log('plot baseline history to file: ' + os.path.basename(out_fig_name)) fig2, ax2 = plt.subplots(figsize=inps.fig_size) ax2 = pp.plot_perp_baseline_hist(ax2, inps.date_list, inps.pbase_list) plt.savefig(out_fig_name, bbox_inches='tight', dpi=inps.figdpi) out_fig_name = os.path.join(inps.out_dir, 'coherenceMatrix{}'.format(inps.figext)) if inps.cohList: log('plot predicted coherence matrix to file: ' + os.path.basename(out_fig_name)) fig3, ax3 = plt.subplots(figsize=inps.fig_size) ax3 = pp.plot_coherence_matrix(ax3, inps.date12_list, inps.cohList, p_dict=vars(inps))[0] plt.savefig(out_fig_name, bbox_inches='tight', dpi=inps.figdpi) if inps.disp_fig: plt.show() return
def main(iargs=None): inps = cmd_line_parse(iargs) # read / calculate inps = read_network_info(inps) # Plot settings inps = check_colormap(inps) if inps.dsetName == 'coherence': inps.ds_name = 'Coherence' figNames = [ i + '.pdf' for i in ['bperpHistory', 'coherenceMatrix', 'coherenceHistory', 'network'] ] elif inps.dsetName == 'offsetSNR': inps.ds_name = 'SNR' figNames = [ i + '.pdf' for i in ['bperpHistory', 'SNRMatrix', 'SNRHistory', 'network'] ] inps.cbar_label = 'Average Spatial {}'.format(inps.ds_name) # Fig 1 - Baseline History fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_perp_baseline_hist(ax, inps.dateList, inps.pbaseList, vars(inps), inps.dateList_drop) if inps.save_fig: fig.savefig(figNames[0], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[0])) if inps.cohList is not None: # Fig 2 - Coherence Matrix fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_coherence_matrix(ax, inps.date12List, inps.cohList, inps.date12List_drop, p_dict=vars(inps))[0] if inps.save_fig: fig.savefig(figNames[1], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[1])) # Fig 3 - Min/Max Coherence History fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_coherence_history(ax, inps.date12List, inps.cohList, p_dict=vars(inps)) if inps.save_fig: fig.savefig(figNames[2], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[2])) # Fig 4 - Interferogram Network fig, ax = plt.subplots(figsize=inps.fig_size) ax = pp.plot_network(ax, inps.date12List, inps.dateList, inps.pbaseList, vars(inps), inps.date12List_drop) if inps.save_fig: fig.savefig(figNames[3], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi) print('save figure to {}'.format(figNames[3])) if inps.disp_fig: print('showing ...') plt.show() else: plt.close() return