def get_algorithm_result(algorithm_class, algorithm_args): runner = create_runner( algorithm_class, num_workers=1, algorithm_args=algorithm_args, ) result = capture_stdout(runner.run)() result = json.loads(result) return result
def get_algorithm_result(algorithm_class, test_input, num_workers=1): alg_args = sum([["-" + p["name"], p["value"]] for p in test_input], []) runner = create_runner( algorithm_class, num_workers=num_workers, algorithm_args=alg_args, ) result = capture_stdout(runner.run)() result = json.loads(result)["result"][0]["data"] return result
if __name__ == "__main__": import time algorithm_args = [ "-x", "lefthippocampus", "-y", "alzheimerbroadcategory", "-pathology", "dementia", "-dataset", "adni", "-filter", "", "-formula", "", "-positive_level", "AD", "-negative_level", "CN", ] runner = create_runner( LogisticRegression, num_workers=10, algorithm_args=algorithm_args, ) start = time.time() runner.run() end = time.time() print("Completed in ", end - start)
continue counter = self.fetch("model__" + "counter_" + categorical + "_" + dataset) raw_out["model"][dataset]["data"][categorical] = dict(counter) self.result = AlgorithmResult(raw_data=raw_out) if __name__ == "__main__": import time from mipframework import create_runner algorithm_args = [ "-y", "rightphgparahippocampalgyrus, gender, alzheimerbroadcategory, rs10498633_t", "-pathology", "dementia", "-dataset", "lille_simulation, lille_simulation1", "-filter", "", ] runner = create_runner( DescriptiveStats, algorithm_args=algorithm_args, num_workers=2, ) start = time.time() runner.run() end = time.time() print("Completed in ", end - start)
import time from mipframework import create_runner algorithm_args = [ "-x", # "lefthippocampus,righthippocampus,leftaccumbensarea", # "gender,apoe4,agegroup", "lefthippocampus,righthippocampus,leftaccumbensarea,gender,apoe4,agegroup", "-y", "alzheimerbroadcategory", "-alpha", "1", "-k", "10", "-pathology", "dementia", "-dataset", "adni", "-filter", "", ] runner = create_runner( NaiveBayes, algorithm_args=algorithm_args, num_workers=3, ) start = time.time() runner.run() end = time.time() # print("Completed in ", end - start)
if __name__ == "__main__": import time from mipframework import create_runner algorithm_args = [ "-x", "rightioginferioroccipitalgyrus,rightmfcmedialfrontalcortex", "-y", "subjectage,rightventraldc,rightaccumbensarea", "-pathology", "dementia, leftaccumbensarea", "-dataset", "adni", "-filter", "", "-formula", "", "-coding", "", ] runner = create_runner( Pearson, algorithm_args=algorithm_args, num_workers=3, ) start = time.time() runner.run() end = time.time() print("Completed in ", end - start)
"-y", "lefthippocampus, righthippocampus, leftcaudate", "-x", "gender, agegroup", "-pathology", "dementia", "-dataset", "edsd, ppmi", "-filter", "", "-dx", "alzheimerbroadcategory", "-c2_feature_selection_method", "RF", "-c2_num_clusters_method", "Euclidean", "-c2_num_clusters", "6", "-c2_clustering_method", "Euclidean", "-c3_feature_selection_method", "RF", "-c3_classification_method", "RF", ] runner = create_runner(ThreeC, algorithm_args=algorithm_args, num_workers=1,) start = time.time() runner.run() end = time.time() print("Completed in ", end - start)
"-y", "hospOutcomeLatest_RIC10", "-devel", "internal", "-max_deg", "4", "-confLevels", "0.80, 0.95", "-thres", "0.95", "-num_points", "200", "-pathology", "dementia", "-dataset", "cb_data", "-filter", "", "-formula", "", ] runner = create_runner( algorithm_class=CalibrationBelt, num_workers=1, algorithm_args=algorithm_args, ) start = time.time() runner.run() end = time.time() print("Completed in ", end - start)
tukey_row["t_stat"] = row["t value"] tukey_row["p_tukey"] = row["Pr(>|t|)"] tukey_dict.append(tukey_row) return tukey_dict if __name__ == "__main__": import time from mipframework import create_runner algorithm_args = [ "-y", "rightmprgprecentralgyrusmedialsegment", "-x", "alzheimerbroadcategory", "-pathology", "dementia", "-dataset", "ppmi,adni", "-filter", "", ] runner = create_runner( Anova, algorithm_args=algorithm_args, num_workers=3, ) start = time.time() runner.run() end = time.time()
"field":"alzheimerbroadcategory", "type":"string", "input":"select", "operator":"equal", "value":"AD" }, { "id":"alzheimerbroadcategory", "field":"alzheimerbroadcategory", "type":"string", "input":"select", "operator":"equal", "value":"MCI" } ], "valid":true } """, "-outcome_pos", "MCI", "-outcome_neg", "AD", "-total_duration", "1100", ] runner = create_runner(KaplanMeier, algorithm_args=algorithm_args, num_workers=1,) start = time.time() runner.run() end = time.time() print("Completed in ", end - start)
idx = eigenvalues.argsort()[::-1] eigenvalues = eigenvalues[idx] eigenvectors = eigenvectors[:, idx] eigenvectors = eigenvectors.T return eigenvalues, eigenvectors if __name__ == "__main__": import time from mipframework import create_runner algorithm_args = [ "-y", "pib", "-pathology", "dementia", "-dataset", "adni", "-filter", "", ] runner = create_runner( PCA, algorithm_args=algorithm_args, num_workers=1, ) start = time.time() runner.run() end = time.time() print("Completed in ", end - start)