Exemple #1
0
def test_viscous_timestep(actx_factory, dim, mu, vel):
    """Test timestep size."""
    actx = actx_factory()
    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=(1.0, ) * dim,
                                      b=(2.0, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 1

    discr = EagerDGDiscretization(actx, mesh, order=order)
    zeros = discr.zeros(actx)
    ones = zeros + 1.0

    velocity = make_obj_array([zeros + vel for _ in range(dim)])

    massval = 1
    mass = massval * ones

    # I *think* this energy should yield c=1.0
    energy = zeros + 1.0 / (1.4 * .4)
    mom = mass * velocity
    species_mass = None

    cv = make_conserved(dim,
                        mass=mass,
                        energy=energy,
                        momentum=mom,
                        species_mass=species_mass)

    from grudge.dt_utils import characteristic_lengthscales
    chlen = characteristic_lengthscales(actx, discr)
    from grudge.op import nodal_min
    chlen_min = nodal_min(discr, "vol", chlen)

    mu = mu * chlen_min
    if mu < 0:
        mu = 0
        tv_model = None
    else:
        tv_model = SimpleTransport(viscosity=mu)

    eos = IdealSingleGas()
    gas_model = GasModel(eos=eos, transport=tv_model)
    fluid_state = make_fluid_state(cv, gas_model)

    from mirgecom.viscous import get_viscous_timestep
    dt_field = get_viscous_timestep(discr, fluid_state)

    speed_total = fluid_state.wavespeed
    dt_expected = chlen / (speed_total + (mu / chlen))

    error = (dt_expected - dt_field) / dt_expected
    assert actx.to_numpy(discr.norm(error, np.inf)) == 0
Exemple #2
0
def test_viscous_stress_tensor(actx_factory, transport_model):
    """Test tau data structure and values against exact."""
    actx = actx_factory()
    dim = 3
    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(a=(1.0, ) * dim,
                                      b=(2.0, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 1

    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(actx, discr.nodes())
    zeros = discr.zeros(actx)
    ones = zeros + 1.0

    # assemble velocities for simple, unique grad components
    velocity_x = nodes[0] + 2 * nodes[1] + 3 * nodes[2]
    velocity_y = 4 * nodes[0] + 5 * nodes[1] + 6 * nodes[2]
    velocity_z = 7 * nodes[0] + 8 * nodes[1] + 9 * nodes[2]
    velocity = make_obj_array([velocity_x, velocity_y, velocity_z])

    mass = 2 * ones
    energy = zeros + 2.5
    mom = mass * velocity

    cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom)
    grad_cv = op.local_grad(discr, cv)

    if transport_model:
        tv_model = SimpleTransport(bulk_viscosity=1.0, viscosity=0.5)
    else:
        tv_model = PowerLawTransport()

    eos = IdealSingleGas()
    gas_model = GasModel(eos=eos, transport=tv_model)
    fluid_state = make_fluid_state(cv, gas_model)

    mu = tv_model.viscosity(eos, cv)
    lam = tv_model.volume_viscosity(eos, cv)

    # Exact answer for tau
    exp_grad_v = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    exp_grad_v_t = np.array([[1, 4, 7], [2, 5, 8], [3, 6, 9]])
    exp_div_v = 15
    exp_tau = (mu * (exp_grad_v + exp_grad_v_t) + lam * exp_div_v * np.eye(3))

    from mirgecom.viscous import viscous_stress_tensor
    tau = viscous_stress_tensor(fluid_state, grad_cv)

    # The errors come from grad_v
    assert actx.to_numpy(discr.norm(tau - exp_tau, np.inf)) < 1e-12
Exemple #3
0
def test_inviscid_mom_flux_components(actx_factory, dim, livedim):
    r"""Test components of the momentum flux with constant pressure, V != 0.

    Checks that the flux terms are returned in the proper order by running
    only 1 non-zero velocity component at-a-time.
    """
    actx = actx_factory()

    eos = IdealSingleGas()

    p0 = 1.0

    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                      b=(0.5, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 3
    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(actx, discr.nodes())

    tolerance = 1e-15
    for livedim in range(dim):
        mass = discr.zeros(actx) + 1.0 + np.dot(nodes, nodes)
        mom = make_obj_array([discr.zeros(actx) for _ in range(dim)])
        mom[livedim] = mass
        p_exact = discr.zeros(actx) + p0
        energy = (p_exact / (eos.gamma() - 1.0) +
                  0.5 * np.dot(mom, mom) / mass)
        cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom)
        p = eos.pressure(cv)
        from mirgecom.gas_model import GasModel, make_fluid_state
        state = make_fluid_state(cv, GasModel(eos=eos))

        def inf_norm(x):
            return actx.to_numpy(discr.norm(x, np.inf))

        assert inf_norm(p - p_exact) < tolerance
        flux = inviscid_flux(state)
        logger.info(f"{dim}d flux = {flux}")
        vel_exact = mom / mass

        # first two components should be nonzero in livedim only
        assert inf_norm(flux.mass - mom) == 0
        eflux_exact = (energy + p_exact) * vel_exact
        assert inf_norm(flux.energy - eflux_exact) == 0

        logger.info("Testing momentum")
        xpmomflux = mass * np.outer(vel_exact,
                                    vel_exact) + p_exact * np.identity(dim)
        assert inf_norm(flux.momentum - xpmomflux) < tolerance
Exemple #4
0
def _get_pulse():
    from mirgecom.eos import IdealSingleGas
    from mirgecom.gas_model import GasModel
    gas_model = GasModel(eos=IdealSingleGas())

    from mirgecom.initializers import Uniform, AcousticPulse
    uniform_init = Uniform(dim=2)
    pulse_init = AcousticPulse(dim=2, center=np.zeros(2), amplitude=1.0, width=.1)

    def init(nodes):
        return pulse_init(x_vec=nodes, cv=uniform_init(nodes), eos=gas_model.eos)

    from meshmode.mesh import BTAG_ALL
    from mirgecom.boundary import AdiabaticSlipBoundary
    boundaries = {
        BTAG_ALL: AdiabaticSlipBoundary()
    }

    return gas_model, init, boundaries, 3e-12
Exemple #5
0
def _get_scalar_lump():
    from mirgecom.eos import IdealSingleGas
    from mirgecom.gas_model import GasModel, make_fluid_state
    gas_model = GasModel(eos=IdealSingleGas())

    from mirgecom.initializers import MulticomponentLump
    init = MulticomponentLump(
        dim=2, nspecies=3, velocity=np.ones(2), spec_y0s=np.ones(3),
        spec_amplitudes=np.ones(3))

    def _my_boundary(discr, btag, gas_model, state_minus, **kwargs):
        actx = state_minus.array_context
        bnd_discr = discr.discr_from_dd(btag)
        nodes = thaw(bnd_discr.nodes(), actx)
        return make_fluid_state(init(x_vec=nodes, eos=gas_model.eos,
                                     **kwargs), gas_model)

    from meshmode.mesh import BTAG_ALL
    from mirgecom.boundary import PrescribedFluidBoundary
    boundaries = {
        BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=_my_boundary)
    }

    return gas_model, init, boundaries, 5e-12
Exemple #6
0
def test_facial_flux(actx_factory, nspecies, order, dim):
    """Check the flux across element faces.

    The flux is checked by prescribing states (q) with known fluxes. Only uniform
    states are tested currently - ensuring that the Lax-Friedrichs flux terms which
    are proportional to jumps in state data vanish.

    Since the returned fluxes use state data which has been interpolated
    to-and-from the element faces, this test is grid-dependent.
    """
    actx = actx_factory()

    tolerance = 1e-14
    p0 = 1.0

    from meshmode.mesh.generation import generate_regular_rect_mesh
    from pytools.convergence import EOCRecorder

    eoc_rec0 = EOCRecorder()
    eoc_rec1 = EOCRecorder()
    for nel_1d in [4, 8, 12]:

        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          nelements_per_axis=(nel_1d, ) * dim)

        logger.info(f"Number of elements: {mesh.nelements}")

        discr = EagerDGDiscretization(actx, mesh, order=order)
        zeros = discr.zeros(actx)
        ones = zeros + 1.0

        mass_input = discr.zeros(actx) + 1.0
        energy_input = discr.zeros(actx) + 2.5
        mom_input = flat_obj_array(
            [discr.zeros(actx) for i in range(discr.dim)])
        mass_frac_input = flat_obj_array(
            [ones / ((i + 1) * 10) for i in range(nspecies)])
        species_mass_input = mass_input * mass_frac_input

        cv = make_conserved(dim,
                            mass=mass_input,
                            energy=energy_input,
                            momentum=mom_input,
                            species_mass=species_mass_input)
        from grudge.trace_pair import interior_trace_pairs
        cv_interior_pairs = interior_trace_pairs(discr, cv)
        # Check the boundary facial fluxes as called on an interior boundary
        # eos = IdealSingleGas()
        from mirgecom.gas_model import (GasModel, make_fluid_state)
        gas_model = GasModel(eos=IdealSingleGas())
        from mirgecom.gas_model import make_fluid_state_trace_pairs
        state_tpairs = make_fluid_state_trace_pairs(cv_interior_pairs,
                                                    gas_model)
        interior_state_pair = state_tpairs[0]
        from mirgecom.inviscid import inviscid_facial_flux
        interior_face_flux = \
            inviscid_facial_flux(discr, state_tpair=interior_state_pair)

        def inf_norm(data):
            if len(data) > 0:
                return actx.to_numpy(discr.norm(data, np.inf, dd="all_faces"))
            else:
                return 0.0

        assert inf_norm(interior_face_flux.mass) < tolerance
        assert inf_norm(interior_face_flux.energy) < tolerance
        assert inf_norm(interior_face_flux.species_mass) < tolerance

        # The expected pressure is 1.0 (by design). And the flux diagonal is
        # [rhov_x*v_x + p] (etc) since we have zero velocities it's just p.
        #
        # The off-diagonals are zero. We get a {ndim}-vector for each
        # dimension, the flux for the x-component of momentum (for example) is:
        # f_momx = < 1.0, 0 , 0> , then we return f_momx .dot. normal, which
        # can introduce negative values.
        #
        # (Explanation courtesy of Mike Campbell,
        # https://github.com/illinois-ceesd/mirgecom/pull/44#discussion_r463304292)

        nhat = thaw(actx, discr.normal("int_faces"))
        mom_flux_exact = discr.project("int_faces", "all_faces", p0 * nhat)
        print(f"{mom_flux_exact=}")
        print(f"{interior_face_flux.momentum=}")
        momerr = inf_norm(interior_face_flux.momentum - mom_flux_exact)
        assert momerr < tolerance
        eoc_rec0.add_data_point(1.0 / nel_1d, momerr)

        # Check the boundary facial fluxes as called on a domain boundary
        dir_mass = discr.project("vol", BTAG_ALL, mass_input)
        dir_e = discr.project("vol", BTAG_ALL, energy_input)
        dir_mom = discr.project("vol", BTAG_ALL, mom_input)
        dir_mf = discr.project("vol", BTAG_ALL, species_mass_input)

        dir_bc = make_conserved(dim,
                                mass=dir_mass,
                                energy=dir_e,
                                momentum=dir_mom,
                                species_mass=dir_mf)
        dir_bval = make_conserved(dim,
                                  mass=dir_mass,
                                  energy=dir_e,
                                  momentum=dir_mom,
                                  species_mass=dir_mf)
        state_tpair = TracePair(BTAG_ALL,
                                interior=make_fluid_state(dir_bval, gas_model),
                                exterior=make_fluid_state(dir_bc, gas_model))
        boundary_flux = inviscid_facial_flux(discr, state_tpair=state_tpair)

        assert inf_norm(boundary_flux.mass) < tolerance
        assert inf_norm(boundary_flux.energy) < tolerance
        assert inf_norm(boundary_flux.species_mass) < tolerance

        nhat = thaw(actx, discr.normal(BTAG_ALL))
        mom_flux_exact = discr.project(BTAG_ALL, "all_faces", p0 * nhat)
        momerr = inf_norm(boundary_flux.momentum - mom_flux_exact)
        assert momerr < tolerance

        eoc_rec1.add_data_point(1.0 / nel_1d, momerr)

    logger.info(f"standalone Errors:\n{eoc_rec0}"
                f"boundary Errors:\n{eoc_rec1}")
    assert (eoc_rec0.order_estimate() >= order - 0.5
            or eoc_rec0.max_error() < 1e-9)
    assert (eoc_rec1.order_estimate() >= order - 0.5
            or eoc_rec1.max_error() < 1e-9)
Exemple #7
0
def test_inviscid_flux_components(actx_factory, dim):
    """Test uniform pressure case.

    Checks that the Euler-internal inviscid flux routine
    :func:`mirgecom.inviscid.inviscid_flux` returns exactly the expected result
    with a constant pressure and no flow.

    Expected inviscid flux is:
      F(q) = <rhoV, (E+p)V, rho(V.x.V) + pI>

    Checks that only diagonal terms of the momentum flux:
      [ rho(V.x.V) + pI ] are non-zero and return the correctly calculated p.
    """
    actx = actx_factory()

    eos = IdealSingleGas()

    p0 = 1.0

    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                      b=(0.5, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 3
    discr = EagerDGDiscretization(actx, mesh, order=order)
    eos = IdealSingleGas()

    logger.info(f"Number of {dim}d elems: {mesh.nelements}")
    # === this next block tests 1,2,3 dimensions,
    # with single and multiple nodes/states. The
    # purpose of this block is to ensure that when
    # all components of V = 0, the flux recovers
    # the expected values (and p0 within tolerance)
    # === with V = 0, fixed P = p0
    tolerance = 1e-15
    nodes = thaw(actx, discr.nodes())
    mass = discr.zeros(actx) + np.dot(nodes, nodes) + 1.0
    mom = make_obj_array([discr.zeros(actx) for _ in range(dim)])
    p_exact = discr.zeros(actx) + p0
    energy = p_exact / 0.4 + 0.5 * np.dot(mom, mom) / mass
    cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom)
    p = eos.pressure(cv)

    from mirgecom.gas_model import GasModel, make_fluid_state
    state = make_fluid_state(cv, GasModel(eos=eos))

    flux = inviscid_flux(state)

    def inf_norm(x):
        return actx.to_numpy(discr.norm(x, np.inf))

    assert inf_norm(p - p_exact) < tolerance
    logger.info(f"{dim}d flux = {flux}")

    # for velocity zero, these components should be == zero
    assert inf_norm(flux.mass) == 0.0
    assert inf_norm(flux.energy) == 0.0

    # The momentum diagonal should be p
    # Off-diagonal should be identically 0
    assert inf_norm(flux.momentum - p0 * np.identity(dim)) < tolerance
Exemple #8
0
def main(ctx_factory=cl.create_some_context, use_logmgr=True,
         use_leap=False, use_profiling=False, casename=None,
         rst_filename=None, actx_class=PyOpenCLArrayContext,
         log_dependent=True):
    """Drive example."""
    cl_ctx = ctx_factory()

    if casename is None:
        casename = "mirgecom"

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    nparts = comm.Get_size()

    from mirgecom.simutil import global_reduce as _global_reduce
    global_reduce = partial(_global_reduce, comm=comm)

    logmgr = initialize_logmgr(use_logmgr,
        filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm)

    if use_profiling:
        queue = cl.CommandQueue(
            cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)
    else:
        queue = cl.CommandQueue(cl_ctx)

    actx = actx_class(
        queue,
        allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)))

    # timestepping control
    if use_leap:
        from leap.rk import RK4MethodBuilder
        timestepper = RK4MethodBuilder("state")
    else:
        timestepper = rk4_step
    t_final = 1e-8
    current_cfl = 1.0
    current_dt = 1e-9
    current_t = 0
    current_step = 0
    constant_cfl = False

    # some i/o frequencies
    nstatus = 1
    nhealth = 1
    nrestart = 5
    nviz = 1

    dim = 2
    rst_path = "restart_data/"
    rst_pattern = (
        rst_path + "{cname}-{step:04d}-{rank:04d}.pkl"
    )
    if rst_filename:  # read the grid from restart data
        rst_filename = f"{rst_filename}-{rank:04d}.pkl"
        from mirgecom.restart import read_restart_data
        restart_data = read_restart_data(actx, rst_filename)
        local_mesh = restart_data["local_mesh"]
        local_nelements = local_mesh.nelements
        global_nelements = restart_data["global_nelements"]
        assert restart_data["num_parts"] == nparts
    else:  # generate the grid from scratch
        nel_1d = 16
        box_ll = -5.0
        box_ur = 5.0
        from meshmode.mesh.generation import generate_regular_rect_mesh
        generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim,
                                b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim)
        local_mesh, global_nelements = generate_and_distribute_mesh(comm,
                                                                    generate_mesh)
        local_nelements = local_mesh.nelements

    order = 3
    discr = EagerDGDiscretization(
        actx, local_mesh, order=order, mpi_communicator=comm
    )
    nodes = thaw(discr.nodes(), actx)

    vis_timer = None

    if logmgr:
        logmgr_add_device_name(logmgr, queue)
        logmgr_add_device_memory_usage(logmgr, queue)

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        logmgr.add_watches([
            ("step.max", "step = {value}, "),
            ("t_sim.max", "sim time: {value:1.6e} s\n"),
            ("t_step.max", "------- step walltime: {value:6g} s, "),
            ("t_log.max", "log walltime: {value:6g} s")
        ])

        if log_dependent:
            logmgr_add_many_discretization_quantities(logmgr, discr, dim,
                                                      extract_vars_for_logging,
                                                      units_for_logging)
            logmgr.add_watches([
                ("min_pressure", "\n------- P (min, max) (Pa) = ({value:1.9e}, "),
                ("max_pressure",    "{value:1.9e})\n"),
                ("min_temperature", "------- T (min, max) (K)  = ({value:7g}, "),
                ("max_temperature",    "{value:7g})\n")])

    # Pyrometheus initialization
    from mirgecom.mechanisms import get_mechanism_cti
    mech_cti = get_mechanism_cti("uiuc")
    sol = cantera.Solution(phase_id="gas", source=mech_cti)
    from mirgecom.thermochemistry import make_pyrometheus_mechanism_class
    pyrometheus_mechanism = make_pyrometheus_mechanism_class(sol)(actx.np)

    nspecies = pyrometheus_mechanism.num_species
    eos = PyrometheusMixture(pyrometheus_mechanism)
    from mirgecom.gas_model import GasModel, make_fluid_state
    gas_model = GasModel(eos=eos)
    from pytools.obj_array import make_obj_array

    y0s = np.zeros(shape=(nspecies,))
    for i in range(nspecies-1):
        y0s[i] = 1.0 / (10.0 ** (i + 1))
    spec_sum = sum([y0s[i] for i in range(nspecies-1)])
    y0s[nspecies-1] = 1.0 - spec_sum

    # Mixture defaults to STP (p, T) = (1atm, 300K)
    velocity = np.zeros(shape=(dim,)) + 1.0
    initializer = MixtureInitializer(dim=dim, nspecies=nspecies,
                                     massfractions=y0s, velocity=velocity)

    def boundary_solution(discr, btag, gas_model, state_minus, **kwargs):
        actx = state_minus.array_context
        bnd_discr = discr.discr_from_dd(btag)
        nodes = thaw(bnd_discr.nodes(), actx)
        return make_fluid_state(initializer(x_vec=nodes, eos=gas_model.eos,
                                            **kwargs), gas_model,
                                temperature_seed=state_minus.temperature)

    boundaries = {
        BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=boundary_solution)
    }

    if rst_filename:
        current_t = restart_data["t"]
        current_step = restart_data["step"]
        current_cv = restart_data["cv"]
        tseed = restart_data["temperature_seed"]
        if logmgr:
            from mirgecom.logging_quantities import logmgr_set_time
            logmgr_set_time(logmgr, current_step, current_t)
    else:
        # Set the current state from time 0
        current_cv = initializer(x_vec=nodes, eos=eos)
        tseed = 300.0

    current_state = make_fluid_state(current_cv, gas_model, temperature_seed=tseed)

    visualizer = make_visualizer(discr)
    initname = initializer.__class__.__name__
    eosname = eos.__class__.__name__
    init_message = make_init_message(dim=dim, order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt, t_final=t_final, nstatus=nstatus,
                                     nviz=nviz, cfl=current_cfl,
                                     constant_cfl=constant_cfl, initname=initname,
                                     eosname=eosname, casename=casename)
    if rank == 0:
        logger.info(init_message)

    def my_write_status(component_errors, dv=None):
        from mirgecom.simutil import allsync
        status_msg = (
            "------- errors="
            + ", ".join("%.3g" % en for en in component_errors))
        if ((dv is not None) and (not log_dependent)):
            temp = dv.temperature
            press = dv.pressure

            from grudge.op import nodal_min_loc, nodal_max_loc
            tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)),
                           comm=comm, op=MPI.MIN)
            tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)),
                           comm=comm, op=MPI.MAX)
            pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)),
                           comm=comm, op=MPI.MIN)
            pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)),
                           comm=comm, op=MPI.MAX)
            dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})"
            status_msg = status_msg + dv_status_msg

        if rank == 0:
            logger.info(status_msg)
        if rank == 0:
            logger.info(status_msg)

    def my_write_viz(step, t, state, dv, exact=None, resid=None):
        if exact is None:
            exact = initializer(x_vec=nodes, eos=eos, time=t)
        if resid is None:
            resid = state - exact
        viz_fields = [("cv", state), ("dv", dv)]
        from mirgecom.simutil import write_visfile
        write_visfile(discr, viz_fields, visualizer, vizname=casename,
                      step=step, t=t, overwrite=True, vis_timer=vis_timer)

    def my_write_restart(step, t, state, tseed):
        rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank)
        if rst_fname != rst_filename:
            rst_data = {
                "local_mesh": local_mesh,
                "cv": state,
                "temperature_seed": tseed,
                "t": t,
                "step": step,
                "order": order,
                "global_nelements": global_nelements,
                "num_parts": nparts
            }
            from mirgecom.restart import write_restart_file
            write_restart_file(actx, rst_data, rst_fname, comm)

    def my_health_check(dv, component_errors):
        health_error = False
        from mirgecom.simutil import check_naninf_local, check_range_local
        if check_naninf_local(discr, "vol", dv.pressure) \
           or check_range_local(discr, "vol", dv.pressure, 1e5, 1.1e5):
            health_error = True
            logger.info(f"{rank=}: Invalid pressure data found.")

        exittol = .09
        if max(component_errors) > exittol:
            health_error = True
            if rank == 0:
                logger.info("Solution diverged from exact soln.")

        return health_error

    def my_pre_step(step, t, dt, state):
        cv, tseed = state
        fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed)
        dv = fluid_state.dv

        try:
            exact = None
            component_errors = None

            if logmgr:
                logmgr.tick_before()

            from mirgecom.simutil import check_step
            do_viz = check_step(step=step, interval=nviz)
            do_restart = check_step(step=step, interval=nrestart)
            do_health = check_step(step=step, interval=nhealth)
            do_status = check_step(step=step, interval=nstatus)

            if do_health:
                exact = initializer(x_vec=nodes, eos=eos, time=t)
                from mirgecom.simutil import compare_fluid_solutions
                component_errors = compare_fluid_solutions(discr, cv, exact)
                health_errors = global_reduce(
                    my_health_check(dv, component_errors), op="lor")
                if health_errors:
                    if rank == 0:
                        logger.info("Fluid solution failed health check.")
                    raise MyRuntimeError("Failed simulation health check.")

            if do_restart:
                my_write_restart(step=step, t=t, state=cv, tseed=tseed)

            if do_viz:
                if exact is None:
                    exact = initializer(x_vec=nodes, eos=eos, time=t)
                resid = state - exact
                my_write_viz(step=step, t=t, state=cv, dv=dv, exact=exact,
                             resid=resid)

            if do_status:
                if component_errors is None:
                    if exact is None:
                        exact = initializer(x_vec=nodes, eos=eos, time=t)
                    from mirgecom.simutil import compare_fluid_solutions
                    component_errors = compare_fluid_solutions(discr, cv, exact)
                my_write_status(component_errors, dv=dv)

        except MyRuntimeError:
            if rank == 0:
                logger.info("Errors detected; attempting graceful exit.")
            my_write_viz(step=step, t=t, state=cv, dv=dv)
            my_write_restart(step=step, t=t, state=cv, tseed=tseed)
            raise

        dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final,
                              constant_cfl)
        return state, dt

    def my_post_step(step, t, dt, state):
        cv, tseed = state
        fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed)
        tseed = fluid_state.temperature
        # Logmgr needs to know about EOS, dt, dim?
        # imo this is a design/scope flaw
        if logmgr:
            set_dt(logmgr, dt)
            set_sim_state(logmgr, dim, cv, eos)
            logmgr.tick_after()
        return make_obj_array([fluid_state.cv, tseed]), dt

    def my_rhs(t, state):
        cv, tseed = state
        fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed)
        return make_obj_array(
            [euler_operator(discr, state=fluid_state, time=t,
                            boundaries=boundaries, gas_model=gas_model),
             0*tseed])

    current_dt = get_sim_timestep(discr, current_state, current_t, current_dt,
                                  current_cfl, t_final, constant_cfl)

    current_step, current_t, advanced_state = \
        advance_state(rhs=my_rhs, timestepper=timestepper,
                      pre_step_callback=my_pre_step,
                      post_step_callback=my_post_step, dt=current_dt,
                      state=make_obj_array([current_state.cv,
                                            current_state.temperature]),
                      t=current_t, t_final=t_final, eos=eos, dim=dim)

    # Dump the final data
    if rank == 0:
        logger.info("Checkpointing final state ...")

    current_cv, tseed = advanced_state
    current_state = make_fluid_state(current_cv, gas_model, temperature_seed=tseed)
    final_dv = current_state.dv
    final_exact = initializer(x_vec=nodes, eos=eos, time=current_t)
    final_resid = current_state.cv - final_exact
    my_write_viz(step=current_step, t=current_t, state=current_cv, dv=final_dv,
                 exact=final_exact, resid=final_resid)
    my_write_restart(step=current_step, t=current_t, state=current_state.cv,
                     tseed=tseed)

    if logmgr:
        logmgr.close()
    elif use_profiling:
        print(actx.tabulate_profiling_data())

    finish_tol = 1e-16
    assert np.abs(current_t - t_final) < finish_tol
Exemple #9
0
def test_slipwall_identity(actx_factory, dim):
    """Identity test - check for the expected boundary solution.

    Checks that the slipwall implements the expected boundary solution:
    rho_plus = rho_minus
    v_plus = v_minus - 2 * (n_hat . v_minus) * n_hat
    mom_plus = rho_plus * v_plus
    E_plus = E_minus
    """
    actx = actx_factory()

    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                      b=(0.5, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 3
    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(actx, discr.nodes())
    eos = IdealSingleGas()
    orig = np.zeros(shape=(dim, ))
    nhat = thaw(actx, discr.normal(BTAG_ALL))
    gas_model = GasModel(eos=eos)

    logger.info(f"Number of {dim}d elems: {mesh.nelements}")

    # for velocity going along each direction
    for vdir in range(dim):
        vel = np.zeros(shape=(dim, ))
        # for velocity directions +1, and -1
        for parity in [1.0, -1.0]:
            vel[vdir] = parity  # Check incoming normal
            initializer = Lump(dim=dim, center=orig, velocity=vel, rhoamp=0.0)
            wall = AdiabaticSlipBoundary()

            uniform_state = initializer(nodes)
            fluid_state = make_fluid_state(uniform_state, gas_model)

            def bnd_norm(vec):
                return actx.to_numpy(discr.norm(vec, p=np.inf, dd=BTAG_ALL))

            interior_soln = \
                project_fluid_state(discr, "vol", BTAG_ALL, gas_model=gas_model,
                                    state=fluid_state)

            bnd_soln = \
                wall.adiabatic_slip_state(discr, btag=BTAG_ALL, gas_model=gas_model,
                                          state_minus=interior_soln)

            from grudge.trace_pair import TracePair
            bnd_pair = TracePair(BTAG_ALL,
                                 interior=interior_soln.cv,
                                 exterior=bnd_soln.cv)

            # check that mass and energy are preserved
            mass_resid = bnd_pair.int.mass - bnd_pair.ext.mass
            mass_err = bnd_norm(mass_resid)
            assert mass_err == 0.0

            energy_resid = bnd_pair.int.energy - bnd_pair.ext.energy
            energy_err = bnd_norm(energy_resid)
            assert energy_err == 0.0

            # check that exterior momentum term is mom_interior - 2 * mom_normal
            mom_norm_comp = np.dot(bnd_pair.int.momentum, nhat)
            mom_norm = nhat * mom_norm_comp
            expected_mom_ext = bnd_pair.int.momentum - 2.0 * mom_norm
            mom_resid = bnd_pair.ext.momentum - expected_mom_ext
            mom_err = bnd_norm(mom_resid)

            assert mom_err == 0.0
Exemple #10
0
def main(ctx_factory=cl.create_some_context, use_logmgr=True,
         use_overintegration=False,
         use_leap=False, use_profiling=False, casename=None,
         rst_filename=None, actx_class=PyOpenCLArrayContext):
    """Drive the example."""
    cl_ctx = ctx_factory()

    if casename is None:
        casename = "mirgecom"

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from mirgecom.simutil import global_reduce as _global_reduce
    global_reduce = partial(_global_reduce, comm=comm)

    logmgr = initialize_logmgr(use_logmgr,
        filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm)

    if use_profiling:
        queue = cl.CommandQueue(
            cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)
    else:
        queue = cl.CommandQueue(cl_ctx)

    actx = actx_class(
        queue,
        allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)))

    # timestepping control
    current_step = 0
    if use_leap:
        from leap.rk import RK4MethodBuilder
        timestepper = RK4MethodBuilder("state")
    else:
        timestepper = rk4_step
    t_final = 0.1
    current_cfl = 1.0
    current_dt = .01
    current_t = 0
    constant_cfl = False

    # some i/o frequencies
    nstatus = 1
    nrestart = 5
    nviz = 10
    nhealth = 1

    dim = 3
    rst_path = "restart_data/"
    rst_pattern = (
        rst_path + "{cname}-{step:04d}-{rank:04d}.pkl"
    )
    if rst_filename:  # read the grid from restart data
        rst_filename = f"{rst_filename}-{rank:04d}.pkl"
        from mirgecom.restart import read_restart_data
        restart_data = read_restart_data(actx, rst_filename)
        local_mesh = restart_data["local_mesh"]
        local_nelements = local_mesh.nelements
        global_nelements = restart_data["global_nelements"]
        assert restart_data["num_parts"] == num_parts
    else:  # generate the grid from scratch
        from meshmode.mesh.generation import generate_regular_rect_mesh
        box_ll = -1
        box_ur = 1
        nel_1d = 16
        generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim,
                                b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim)
        local_mesh, global_nelements = generate_and_distribute_mesh(comm,
                                                                    generate_mesh)
        local_nelements = local_mesh.nelements

    from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
    from meshmode.discretization.poly_element import \
        default_simplex_group_factory, QuadratureSimplexGroupFactory

    order = 1
    discr = EagerDGDiscretization(
        actx, local_mesh,
        discr_tag_to_group_factory={
            DISCR_TAG_BASE: default_simplex_group_factory(
                base_dim=local_mesh.dim, order=order),
            DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1)
        },
        mpi_communicator=comm
    )
    nodes = thaw(discr.nodes(), actx)

    if use_overintegration:
        quadrature_tag = DISCR_TAG_QUAD
    else:
        quadrature_tag = None

    vis_timer = None

    if logmgr:
        logmgr_add_cl_device_info(logmgr, queue)
        logmgr_add_device_memory_usage(logmgr, queue)
        logmgr_add_many_discretization_quantities(logmgr, discr, dim,
                             extract_vars_for_logging, units_for_logging)

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        logmgr.add_watches([
            ("step.max", "step = {value}, "),
            ("t_sim.max", "sim time: {value:1.6e} s\n"),
            ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "),
            ("max_pressure",    "{value:1.9e})\n"),
            ("t_step.max", "------- step walltime: {value:6g} s, "),
            ("t_log.max", "log walltime: {value:6g} s")
        ])

    eos = IdealSingleGas()
    gas_model = GasModel(eos=eos)
    vel = np.zeros(shape=(dim,))
    orig = np.zeros(shape=(dim,))
    initializer = Lump(dim=dim, center=orig, velocity=vel, rhoamp=0.0)
    wall = AdiabaticSlipBoundary()
    boundaries = {BTAG_ALL: wall}
    uniform_state = initializer(nodes)
    acoustic_pulse = AcousticPulse(dim=dim, amplitude=1.0, width=.1,
                                   center=orig)
    if rst_filename:
        current_t = restart_data["t"]
        current_step = restart_data["step"]
        current_cv = restart_data["cv"]
        if logmgr:
            from mirgecom.logging_quantities import logmgr_set_time
            logmgr_set_time(logmgr, current_step, current_t)
    else:
        # Set the current state from time 0
        current_cv = acoustic_pulse(x_vec=nodes, cv=uniform_state, eos=eos)

    current_state = make_fluid_state(current_cv, gas_model)

    visualizer = make_visualizer(discr)

    initname = "pulse"
    eosname = eos.__class__.__name__
    init_message = make_init_message(dim=dim, order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt, t_final=t_final, nstatus=nstatus,
                                     nviz=nviz, cfl=current_cfl,
                                     constant_cfl=constant_cfl, initname=initname,
                                     eosname=eosname, casename=casename)
    if rank == 0:
        logger.info(init_message)

    def my_write_viz(step, t, state, dv=None):
        if dv is None:
            dv = eos.dependent_vars(state)
        viz_fields = [("cv", state),
                      ("dv", dv)]
        from mirgecom.simutil import write_visfile
        write_visfile(discr, viz_fields, visualizer, vizname=casename,
                      step=step, t=t, overwrite=True, vis_timer=vis_timer)

    def my_write_restart(step, t, state):
        rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank)
        if rst_fname != rst_filename:
            rst_data = {
                "local_mesh": local_mesh,
                "cv": state,
                "t": t,
                "step": step,
                "order": order,
                "global_nelements": global_nelements,
                "num_parts": num_parts
            }
            from mirgecom.restart import write_restart_file
            write_restart_file(actx, rst_data, rst_fname, comm)

    def my_health_check(pressure):
        health_error = False
        from mirgecom.simutil import check_naninf_local, check_range_local
        if check_naninf_local(discr, "vol", pressure) \
           or check_range_local(discr, "vol", pressure, .8, 1.5):
            health_error = True
            logger.info(f"{rank=}: Invalid pressure data found.")
        return health_error

    def my_pre_step(step, t, dt, state):
        fluid_state = make_fluid_state(state, gas_model)
        dv = fluid_state.dv

        try:

            if logmgr:
                logmgr.tick_before()

            from mirgecom.simutil import check_step
            do_viz = check_step(step=step, interval=nviz)
            do_restart = check_step(step=step, interval=nrestart)
            do_health = check_step(step=step, interval=nhealth)

            if do_health:
                health_errors = global_reduce(my_health_check(dv.pressure), op="lor")
                if health_errors:
                    if rank == 0:
                        logger.info("Fluid solution failed health check.")
                    raise MyRuntimeError("Failed simulation health check.")

            if do_restart:
                my_write_restart(step=step, t=t, state=state)

            if do_viz:
                my_write_viz(step=step, t=t, state=state, dv=dv)

        except MyRuntimeError:
            if rank == 0:
                logger.info("Errors detected; attempting graceful exit.")
            my_write_viz(step=step, t=t, state=state)
            my_write_restart(step=step, t=t, state=state)
            raise

        dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final,
                              constant_cfl)
        return state, dt

    def my_post_step(step, t, dt, state):
        # Logmgr needs to know about EOS, dt, dim?
        # imo this is a design/scope flaw
        if logmgr:
            set_dt(logmgr, dt)
            set_sim_state(logmgr, dim, state, eos)
            logmgr.tick_after()
        return state, dt

    def my_rhs(t, state):
        fluid_state = make_fluid_state(cv=state, gas_model=gas_model)
        return euler_operator(discr, state=fluid_state, time=t,
                              boundaries=boundaries,
                              gas_model=gas_model,
                              quadrature_tag=quadrature_tag)

    current_dt = get_sim_timestep(discr, current_state, current_t, current_dt,
                                  current_cfl, t_final, constant_cfl)

    current_step, current_t, current_cv = \
        advance_state(rhs=my_rhs, timestepper=timestepper,
                      pre_step_callback=my_pre_step,
                      post_step_callback=my_post_step, dt=current_dt,
                      state=current_cv, t=current_t, t_final=t_final)

    # Dump the final data
    if rank == 0:
        logger.info("Checkpointing final state ...")
    final_state = make_fluid_state(current_cv, gas_model)
    final_dv = final_state.dv

    my_write_viz(step=current_step, t=current_t, state=current_cv, dv=final_dv)
    my_write_restart(step=current_step, t=current_t, state=current_cv)

    if logmgr:
        logmgr.close()
    elif use_profiling:
        print(actx.tabulate_profiling_data())

    finish_tol = 1e-16
    assert np.abs(current_t - t_final) < finish_tol
Exemple #11
0
def test_vortex_rhs(actx_factory, order, use_overintegration):
    """Test the inviscid rhs using the non-trivial 2D isentropic vortex.

    The case is configured to yield rhs = 0. Checks several different orders
    and refinement levels to check error behavior.
    """
    actx = actx_factory()

    dim = 2

    from pytools.convergence import EOCRecorder
    eoc_rec = EOCRecorder()

    from meshmode.mesh.generation import generate_regular_rect_mesh

    for nel_1d in [32, 48, 64]:

        mesh = generate_regular_rect_mesh(
            a=(-5,) * dim, b=(5,) * dim, nelements_per_axis=(nel_1d,) * dim,
        )

        logger.info(
            f"Number of {dim}d elements:  {mesh.nelements}"
        )

        from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
        from meshmode.discretization.poly_element import \
            default_simplex_group_factory, QuadratureSimplexGroupFactory

        discr = EagerDGDiscretization(
            actx, mesh,
            discr_tag_to_group_factory={
                DISCR_TAG_BASE: default_simplex_group_factory(
                    base_dim=dim, order=order),
                DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1)
            }
        )

        if use_overintegration:
            quadrature_tag = DISCR_TAG_QUAD
        else:
            quadrature_tag = None

        nodes = thaw(discr.nodes(), actx)

        # Init soln with Vortex and expected RHS = 0
        vortex = Vortex2D(center=[0, 0], velocity=[0, 0])
        vortex_soln = vortex(nodes)
        gas_model = GasModel(eos=IdealSingleGas())
        fluid_state = make_fluid_state(vortex_soln, gas_model)

        def _vortex_boundary(discr, btag, gas_model, state_minus, **kwargs):
            actx = state_minus.array_context
            bnd_discr = discr.discr_from_dd(btag)
            nodes = thaw(bnd_discr.nodes(), actx)
            return make_fluid_state(vortex(x_vec=nodes, **kwargs), gas_model)

        boundaries = {
            BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=_vortex_boundary)
        }

        inviscid_rhs = euler_operator(
            discr, state=fluid_state, gas_model=gas_model, boundaries=boundaries,
            time=0.0, quadrature_tag=quadrature_tag)

        err_max = max_component_norm(discr, inviscid_rhs, np.inf)

        eoc_rec.add_data_point(1.0 / nel_1d, err_max)

    logger.info(
        f"Error for (dim,order) = ({dim},{order}):\n"
        f"{eoc_rec}"
    )

    assert (
        eoc_rec.order_estimate() >= order - 0.5
        or eoc_rec.max_error() < 1e-11
    )
Exemple #12
0
def test_pyrometheus_eos(ctx_factory, mechname, dim, y0, vel):
    """Test PyrometheusMixture EOS for all available mechanisms.

    Tests that the PyrometheusMixture EOS gets the same thermo properties
    (p, T, e) as the Pyrometheus-native mechanism code.
    """
    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                      b=(0.5, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 4

    logger.info(f"Number of elements {mesh.nelements}")

    discr = EagerDGDiscretization(actx, mesh, order=order)
    from meshmode.dof_array import thaw
    nodes = thaw(actx, discr.nodes())

    # Pyrometheus initialization
    mech_cti = get_mechanism_cti(mechname)
    sol = cantera.Solution(phase_id="gas", source=mech_cti)
    from mirgecom.thermochemistry import make_pyrometheus_mechanism_class
    prometheus_mechanism = make_pyrometheus_mechanism_class(sol)(actx.np)

    nspecies = prometheus_mechanism.num_species
    print(f"PrometheusMixture::Mechanism = {mechname}")
    print(f"PrometheusMixture::NumSpecies = {nspecies}")

    press0 = 101500.0
    temp0 = 300.0
    y0s = np.zeros(shape=(nspecies, ))
    for i in range(1, nspecies):
        y0s[i] = y0 / (10.0**i)
    y0s[0] = 1.0 - np.sum(y0s[1:])
    velocity = vel * np.ones(shape=(dim, ))

    for fac in range(1, 7):
        tempin = fac * temp0
        pressin = fac * press0

        print(f"Testing {mechname}(t,P) = ({tempin}, {pressin})")

        ones = discr.zeros(actx) + 1.0
        tin = tempin * ones
        pin = pressin * ones
        yin = y0s * ones
        tguess = 300.0

        pyro_rho = prometheus_mechanism.get_density(pin, tin, yin)
        pyro_e = prometheus_mechanism.get_mixture_internal_energy_mass(
            tin, yin)
        pyro_t = prometheus_mechanism.get_temperature(pyro_e, tguess, yin)
        pyro_p = prometheus_mechanism.get_pressure(pyro_rho, pyro_t, yin)

        print(f"prom(rho, y, p, t, e) = ({pyro_rho}, {y0s}, "
              f"{pyro_p}, {pyro_t}, {pyro_e})")

        eos = PyrometheusMixture(prometheus_mechanism)
        gas_model = GasModel(eos=eos)
        initializer = MixtureInitializer(dim=dim,
                                         nspecies=nspecies,
                                         pressure=pyro_p,
                                         temperature=pyro_t,
                                         massfractions=y0s,
                                         velocity=velocity)

        cv = initializer(eos=eos, t=0, x_vec=nodes)
        fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tguess)
        p = fluid_state.pressure
        temperature = fluid_state.temperature
        internal_energy = eos.get_internal_energy(temperature=tin,
                                                  species_mass_fractions=yin)
        y = cv.species_mass_fractions

        print(f"pyro_y = {y}")
        print(f"pyro_eos.p = {p}")
        print(f"pyro_eos.temp = {temperature}")
        print(f"pyro_eos.e = {internal_energy}")

        def inf_norm(x):
            return actx.to_numpy(discr.norm(x, np.inf))

        tol = 1e-14
        assert inf_norm((cv.mass - pyro_rho) / pyro_rho) < tol
        assert inf_norm((temperature - pyro_t) / pyro_t) < tol
        assert inf_norm((internal_energy - pyro_e) / pyro_e) < tol
        assert inf_norm((p - pyro_p) / pyro_p) < tol
Exemple #13
0
def test_diffusive_heat_flux(actx_factory):
    """Test diffusive heat flux and values against exact."""
    actx = actx_factory()
    dim = 3
    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=(1.0, ) * dim,
                                      b=(2.0, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 1

    discr = EagerDGDiscretization(actx, mesh, order=order)
    nodes = thaw(actx, discr.nodes())
    zeros = discr.zeros(actx)
    ones = zeros + 1.0

    # assemble velocities for simple, unique grad components
    velocity_x = nodes[0] + 2 * nodes[1] + 3 * nodes[2]
    velocity_y = 4 * nodes[0] + 5 * nodes[1] + 6 * nodes[2]
    velocity_z = 7 * nodes[0] + 8 * nodes[1] + 9 * nodes[2]
    velocity = make_obj_array([velocity_x, velocity_y, velocity_z])

    # assemble y so that each one has simple, but unique grad components
    nspecies = 2 * dim
    y = make_obj_array([ones for _ in range(nspecies)])
    for idim in range(dim):
        ispec = 2 * idim
        y[ispec] = (ispec + 1) * (idim * dim + 1) * sum(
            [(iidim + 1) * nodes[iidim] for iidim in range(dim)])
        y[ispec + 1] = -y[ispec]

    massval = 2
    mass = massval * ones
    energy = zeros + 2.5
    mom = mass * velocity
    species_mass = mass * y

    cv = make_conserved(dim,
                        mass=mass,
                        energy=energy,
                        momentum=mom,
                        species_mass=species_mass)
    grad_cv = op.local_grad(discr, cv)

    mu_b = 1.0
    mu = 0.5
    kappa = 5.0
    # assemble d_alpha so that every species has a unique j
    d_alpha = np.array([(ispec + 1) for ispec in range(nspecies)])

    tv_model = SimpleTransport(bulk_viscosity=mu_b,
                               viscosity=mu,
                               thermal_conductivity=kappa,
                               species_diffusivity=d_alpha)

    eos = IdealSingleGas()
    gas_model = GasModel(eos=eos, transport=tv_model)
    fluid_state = make_fluid_state(cv, gas_model)

    from mirgecom.viscous import diffusive_flux
    j = diffusive_flux(fluid_state, grad_cv)

    def inf_norm(x):
        return actx.to_numpy(discr.norm(x, np.inf))

    tol = 1e-10
    for idim in range(dim):
        ispec = 2 * idim
        exact_dy = np.array([((ispec + 1) * (idim * dim + 1)) * (iidim + 1)
                             for iidim in range(dim)])
        exact_j = -massval * d_alpha[ispec] * exact_dy
        assert inf_norm(j[ispec] - exact_j) < tol
        exact_j = massval * d_alpha[ispec + 1] * exact_dy
        assert inf_norm(j[ispec + 1] - exact_j) < tol
Exemple #14
0
def test_poiseuille_fluxes(actx_factory, order, kappa):
    """Test the viscous fluxes using a Poiseuille input state."""
    actx = actx_factory()
    dim = 2

    from pytools.convergence import EOCRecorder
    e_eoc_rec = EOCRecorder()
    p_eoc_rec = EOCRecorder()

    base_pressure = 100000.0
    pressure_ratio = 1.001
    mu = 42  # arbitrary
    left_boundary_location = 0
    right_boundary_location = 0.1
    ybottom = 0.
    ytop = .02
    nspecies = 0
    spec_diffusivity = 0 * np.ones(nspecies)
    transport_model = SimpleTransport(viscosity=mu,
                                      thermal_conductivity=kappa,
                                      species_diffusivity=spec_diffusivity)

    xlen = right_boundary_location - left_boundary_location
    p_low = base_pressure
    p_hi = pressure_ratio * base_pressure
    dpdx = (p_low - p_hi) / xlen
    rho = 1.0

    eos = IdealSingleGas()
    gas_model = GasModel(eos=eos, transport=transport_model)

    from mirgecom.initializers import PlanarPoiseuille
    initializer = PlanarPoiseuille(density=rho, mu=mu)

    def _elbnd_flux(discr, compute_interior_flux, compute_boundary_flux,
                    int_tpair, boundaries):
        return (compute_interior_flux(int_tpair) +
                sum(compute_boundary_flux(btag) for btag in boundaries))

    from mirgecom.flux import gradient_flux_central

    def cv_flux_interior(int_tpair):
        normal = thaw(actx, discr.normal(int_tpair.dd))
        flux_weak = gradient_flux_central(int_tpair, normal)
        dd_all_faces = int_tpair.dd.with_dtag("all_faces")
        return discr.project(int_tpair.dd, dd_all_faces, flux_weak)

    def cv_flux_boundary(btag):
        boundary_discr = discr.discr_from_dd(btag)
        bnd_nodes = thaw(actx, boundary_discr.nodes())
        cv_bnd = initializer(x_vec=bnd_nodes, eos=eos)
        bnd_nhat = thaw(actx, discr.normal(btag))
        from grudge.trace_pair import TracePair
        bnd_tpair = TracePair(btag, interior=cv_bnd, exterior=cv_bnd)
        flux_weak = gradient_flux_central(bnd_tpair, bnd_nhat)
        dd_all_faces = bnd_tpair.dd.with_dtag("all_faces")
        return discr.project(bnd_tpair.dd, dd_all_faces, flux_weak)

    for nfac in [1, 2, 4]:

        npts_axis = nfac * (11, 21)
        box_ll = (left_boundary_location, ybottom)
        box_ur = (right_boundary_location, ytop)
        mesh = _get_box_mesh(2, a=box_ll, b=box_ur, n=npts_axis)

        logger.info(f"Number of {dim}d elements: {mesh.nelements}")

        discr = EagerDGDiscretization(actx, mesh, order=order)
        nodes = thaw(actx, discr.nodes())

        def inf_norm(x):
            return actx.to_numpy(discr.norm(x, np.inf))

        # compute max element size
        from grudge.dt_utils import h_max_from_volume
        h_max = h_max_from_volume(discr)

        # form exact cv
        cv = initializer(x_vec=nodes, eos=eos)
        cv_int_tpair = interior_trace_pair(discr, cv)
        boundaries = [BTAG_ALL]
        cv_flux_bnd = _elbnd_flux(discr, cv_flux_interior, cv_flux_boundary,
                                  cv_int_tpair, boundaries)
        from mirgecom.operators import grad_operator
        from grudge.dof_desc import as_dofdesc
        dd_vol = as_dofdesc("vol")
        dd_faces = as_dofdesc("all_faces")
        grad_cv = grad_operator(discr, dd_vol, dd_faces, cv, cv_flux_bnd)

        xp_grad_cv = initializer.exact_grad(x_vec=nodes, eos=eos, cv_exact=cv)
        xp_grad_v = 1 / cv.mass * xp_grad_cv.momentum
        xp_tau = mu * (xp_grad_v + xp_grad_v.transpose())

        # sanity check the gradient:
        relerr_scale_e = 1.0 / inf_norm(xp_grad_cv.energy)
        relerr_scale_p = 1.0 / inf_norm(xp_grad_cv.momentum)
        graderr_e = inf_norm(grad_cv.energy - xp_grad_cv.energy)
        graderr_p = inf_norm(grad_cv.momentum - xp_grad_cv.momentum)
        graderr_e *= relerr_scale_e
        graderr_p *= relerr_scale_p
        assert graderr_e < 5e-7
        assert graderr_p < 5e-11

        zeros = discr.zeros(actx)
        ones = zeros + 1
        pressure = eos.pressure(cv)
        # grad of p should be dp/dx
        xp_grad_p = make_obj_array([dpdx * ones, zeros])
        grad_p = op.local_grad(discr, pressure)
        dpscal = 1.0 / np.abs(dpdx)

        temperature = eos.temperature(cv)
        tscal = rho * eos.gas_const() * dpscal
        xp_grad_t = xp_grad_p / (cv.mass * eos.gas_const())
        grad_t = op.local_grad(discr, temperature)

        # sanity check
        assert inf_norm(grad_p - xp_grad_p) * dpscal < 5e-9
        assert inf_norm(grad_t - xp_grad_t) * tscal < 5e-9

        fluid_state = make_fluid_state(cv, gas_model)
        # verify heat flux
        from mirgecom.viscous import conductive_heat_flux
        heat_flux = conductive_heat_flux(fluid_state, grad_t)
        xp_heat_flux = -kappa * xp_grad_t
        assert inf_norm(heat_flux - xp_heat_flux) < 2e-8

        xp_e_flux = np.dot(xp_tau, cv.velocity) - xp_heat_flux
        xp_mom_flux = xp_tau
        from mirgecom.viscous import viscous_flux
        vflux = viscous_flux(fluid_state, grad_cv, grad_t)

        efluxerr = (inf_norm(vflux.energy - xp_e_flux) / inf_norm(xp_e_flux))
        momfluxerr = (inf_norm(vflux.momentum - xp_mom_flux) /
                      inf_norm(xp_mom_flux))

        assert inf_norm(vflux.mass) == 0
        e_eoc_rec.add_data_point(actx.to_numpy(h_max), efluxerr)
        p_eoc_rec.add_data_point(actx.to_numpy(h_max), momfluxerr)

    assert (e_eoc_rec.order_estimate() >= order - 0.5
            or e_eoc_rec.max_error() < 3e-9)
    assert (p_eoc_rec.order_estimate() >= order - 0.5
            or p_eoc_rec.max_error() < 2e-12)
Exemple #15
0
def test_inviscid_flux(actx_factory, nspecies, dim):
    """Check inviscid flux against exact expected result: Identity test.

    Directly check inviscid flux routine, :func:`mirgecom.inviscid.inviscid_flux`,
    against the exact expected result. This test is designed to fail if the flux
    routine is broken.

    The expected inviscid flux is:
      F(q) = <rhoV, (E+p)V, rho(V.x.V) + pI, rhoY V>
    """
    actx = actx_factory()

    nel_1d = 16

    from meshmode.mesh.generation import generate_regular_rect_mesh

    #    for dim in [1, 2, 3]:
    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                      b=(0.5, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 3
    discr = EagerDGDiscretization(actx, mesh, order=order)
    eos = IdealSingleGas()

    logger.info(f"Number of {dim}d elems: {mesh.nelements}")

    def rand():
        from meshmode.dof_array import DOFArray
        return DOFArray(
            actx,
            tuple(
                actx.from_numpy(np.random.rand(grp.nelements, grp.nunit_dofs))
                for grp in discr.discr_from_dd("vol").groups))

    mass = rand()
    energy = rand()
    mom = make_obj_array([rand() for _ in range(dim)])

    mass_fractions = make_obj_array([rand() for _ in range(nspecies)])
    species_mass = mass * mass_fractions

    cv = make_conserved(dim,
                        mass=mass,
                        energy=energy,
                        momentum=mom,
                        species_mass=species_mass)

    # {{{ create the expected result

    p = eos.pressure(cv)
    escale = (energy + p) / mass

    numeq = dim + 2 + nspecies

    expected_flux = np.zeros((numeq, dim), dtype=object)
    expected_flux[0] = mom
    expected_flux[1] = mom * escale

    for i in range(dim):
        for j in range(dim):
            expected_flux[2 + i,
                          j] = (mom[i] * mom[j] / mass + (p if i == j else 0))

    for i in range(nspecies):
        expected_flux[dim + 2 + i] = mom * mass_fractions[i]

    expected_flux = make_conserved(dim, q=expected_flux)

    # }}}

    from mirgecom.gas_model import GasModel, make_fluid_state
    gas_model = GasModel(eos=eos)
    state = make_fluid_state(cv, gas_model)

    flux = inviscid_flux(state)
    flux_resid = flux - expected_flux

    for i in range(numeq, dim):
        for j in range(dim):
            assert (la.norm(flux_resid[i, j].get())) == 0.0
def main(ctx_factory=cl.create_some_context,
         use_logmgr=True,
         use_leap=False,
         use_overintegration=False,
         use_profiling=False,
         casename=None,
         rst_filename=None,
         actx_class=PyOpenCLArrayContext,
         log_dependent=True):
    """Drive example."""
    cl_ctx = ctx_factory()

    if casename is None:
        casename = "mirgecom"

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    nproc = comm.Get_size()

    from mirgecom.simutil import global_reduce as _global_reduce
    global_reduce = partial(_global_reduce, comm=comm)

    logmgr = initialize_logmgr(use_logmgr,
                               filename=f"{casename}.sqlite",
                               mode="wu",
                               mpi_comm=comm)

    if use_profiling:
        queue = cl.CommandQueue(
            cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)
    else:
        queue = cl.CommandQueue(cl_ctx)

    actx = actx_class(queue,
                      allocator=cl_tools.MemoryPool(
                          cl_tools.ImmediateAllocator(queue)))

    # Some discretization parameters
    dim = 2
    nel_1d = 8
    order = 1

    # {{{ Time stepping control

    # This example runs only 3 steps by default (to keep CI ~short)
    # With the mixture defined below, equilibrium is achieved at ~40ms
    # To run to equilibrium, set t_final >= 40ms.

    # Time stepper selection
    if use_leap:
        from leap.rk import RK4MethodBuilder
        timestepper = RK4MethodBuilder("state")
    else:
        timestepper = rk4_step

    # Time loop control parameters
    current_step = 0
    t_final = 1e-8
    current_cfl = 1.0
    current_dt = 1e-9
    current_t = 0
    constant_cfl = False

    # i.o frequencies
    nstatus = 1
    nviz = 5
    nhealth = 1
    nrestart = 5

    # }}}  Time stepping control

    debug = False

    rst_path = "restart_data/"
    rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl")
    if rst_filename:  # read the grid from restart data
        rst_filename = f"{rst_filename}-{rank:04d}.pkl"

        from mirgecom.restart import read_restart_data
        restart_data = read_restart_data(actx, rst_filename)
        local_mesh = restart_data["local_mesh"]
        local_nelements = local_mesh.nelements
        global_nelements = restart_data["global_nelements"]
        assert restart_data["num_parts"] == nproc
        rst_time = restart_data["t"]
        rst_step = restart_data["step"]
        rst_order = restart_data["order"]
    else:  # generate the grid from scratch
        from meshmode.mesh.generation import generate_regular_rect_mesh
        box_ll = -0.005
        box_ur = 0.005
        generate_mesh = partial(generate_regular_rect_mesh,
                                a=(box_ll, ) * dim,
                                b=(box_ur, ) * dim,
                                nelements_per_axis=(nel_1d, ) * dim)
        local_mesh, global_nelements = generate_and_distribute_mesh(
            comm, generate_mesh)
        local_nelements = local_mesh.nelements

    from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
    from meshmode.discretization.poly_element import \
        default_simplex_group_factory, QuadratureSimplexGroupFactory

    discr = EagerDGDiscretization(
        actx,
        local_mesh,
        discr_tag_to_group_factory={
            DISCR_TAG_BASE:
            default_simplex_group_factory(base_dim=local_mesh.dim,
                                          order=order),
            DISCR_TAG_QUAD:
            QuadratureSimplexGroupFactory(2 * order + 1)
        },
        mpi_communicator=comm)
    nodes = thaw(discr.nodes(), actx)
    ones = discr.zeros(actx) + 1.0

    if use_overintegration:
        quadrature_tag = DISCR_TAG_QUAD
    else:
        quadrature_tag = None

    ones = discr.zeros(actx) + 1.0

    vis_timer = None

    if logmgr:
        logmgr_add_cl_device_info(logmgr, queue)
        logmgr_add_device_memory_usage(logmgr, queue)

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        logmgr.add_watches([("step.max", "step = {value}, "),
                            ("t_sim.max", "sim time: {value:1.6e} s\n"),
                            ("t_step.max",
                             "------- step walltime: {value:6g} s, "),
                            ("t_log.max", "log walltime: {value:6g} s")])

        if log_dependent:
            logmgr_add_many_discretization_quantities(
                logmgr, discr, dim, extract_vars_for_logging,
                units_for_logging)
            logmgr.add_watches([
                ("min_pressure",
                 "\n------- P (min, max) (Pa) = ({value:1.9e}, "),
                ("max_pressure", "{value:1.9e})\n"),
                ("min_temperature",
                 "------- T (min, max) (K)  = ({value:7g}, "),
                ("max_temperature", "{value:7g})\n")
            ])

    # {{{  Set up initial state using Cantera

    # Use Cantera for initialization
    # -- Pick up a CTI for the thermochemistry config
    # --- Note: Users may add their own CTI file by dropping it into
    # ---       mirgecom/mechanisms alongside the other CTI files.
    from mirgecom.mechanisms import get_mechanism_cti
    mech_cti = get_mechanism_cti("uiuc")

    cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti)
    nspecies = cantera_soln.n_species

    # Initial temperature, pressure, and mixutre mole fractions are needed to
    # set up the initial state in Cantera.
    temperature_seed = 1500.0  # Initial temperature hot enough to burn
    # Parameters for calculating the amounts of fuel, oxidizer, and inert species
    equiv_ratio = 1.0
    ox_di_ratio = 0.21
    stoich_ratio = 3.0
    # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen
    i_fu = cantera_soln.species_index("C2H4")
    i_ox = cantera_soln.species_index("O2")
    i_di = cantera_soln.species_index("N2")
    x = np.zeros(nspecies)
    # Set the species mole fractions according to our desired fuel/air mixture
    x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio +
                                             ox_di_ratio * equiv_ratio)
    x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio
    x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio
    # Uncomment next line to make pylint fail when it can't find cantera.one_atm
    one_atm = cantera.one_atm  # pylint: disable=no-member
    # one_atm = 101325.0

    # Let the user know about how Cantera is being initilized
    print(f"Input state (T,P,X) = ({temperature_seed}, {one_atm}, {x}")
    # Set Cantera internal gas temperature, pressure, and mole fractios
    cantera_soln.TPX = temperature_seed, one_atm, x
    # Pull temperature, total density, mass fractions, and pressure from Cantera
    # We need total density, and mass fractions to initialize the fluid/gas state.
    can_t, can_rho, can_y = cantera_soln.TDY
    can_p = cantera_soln.P
    # *can_t*, *can_p* should not differ (significantly) from user's initial data,
    # but we want to ensure that we use exactly the same starting point as Cantera,
    # so we use Cantera's version of these data.

    # }}}

    # {{{ Create Pyrometheus thermochemistry object & EOS

    # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and
    # generates a set of methods to calculate chemothermomechanical properties and
    # states for this particular mechanism.
    from mirgecom.thermochemistry import make_pyrometheus_mechanism_class
    pyro_mechanism = make_pyrometheus_mechanism_class(cantera_soln)(actx.np)
    eos = PyrometheusMixture(pyro_mechanism,
                             temperature_guess=temperature_seed)

    gas_model = GasModel(eos=eos)
    from pytools.obj_array import make_obj_array

    def get_temperature_update(cv, temperature):
        y = cv.species_mass_fractions
        e = gas_model.eos.internal_energy(cv) / cv.mass
        return pyro_mechanism.get_temperature_update_energy(e, temperature, y)

    from mirgecom.gas_model import make_fluid_state

    def get_fluid_state(cv, tseed):
        return make_fluid_state(cv=cv,
                                gas_model=gas_model,
                                temperature_seed=tseed)

    compute_temperature_update = actx.compile(get_temperature_update)
    construct_fluid_state = actx.compile(get_fluid_state)

    # }}}

    # {{{ MIRGE-Com state initialization

    # Initialize the fluid/gas state with Cantera-consistent data:
    # (density, pressure, temperature, mass_fractions)
    print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}")
    velocity = np.zeros(shape=(dim, ))
    initializer = MixtureInitializer(dim=dim,
                                     nspecies=nspecies,
                                     pressure=can_p,
                                     temperature=can_t,
                                     massfractions=can_y,
                                     velocity=velocity)

    my_boundary = AdiabaticSlipBoundary()
    boundaries = {BTAG_ALL: my_boundary}

    if rst_filename:
        current_step = rst_step
        current_t = rst_time
        if logmgr:
            from mirgecom.logging_quantities import logmgr_set_time
            logmgr_set_time(logmgr, current_step, current_t)
        if order == rst_order:
            current_cv = restart_data["cv"]
            temperature_seed = restart_data["temperature_seed"]
        else:
            rst_cv = restart_data["cv"]
            old_discr = EagerDGDiscretization(actx,
                                              local_mesh,
                                              order=rst_order,
                                              mpi_communicator=comm)
            from meshmode.discretization.connection import make_same_mesh_connection
            connection = make_same_mesh_connection(
                actx, discr.discr_from_dd("vol"),
                old_discr.discr_from_dd("vol"))
            current_cv = connection(rst_cv)
            temperature_seed = connection(restart_data["temperature_seed"])
    else:
        # Set the current state from time 0
        current_cv = initializer(eos=gas_model.eos, x_vec=nodes)
        temperature_seed = temperature_seed * ones

    # The temperature_seed going into this function is:
    # - At time 0: the initial temperature input data (maybe from Cantera)
    # - On restart: the restarted temperature seed from restart file (saving
    #               the *seed* allows restarts to be deterministic
    current_fluid_state = construct_fluid_state(current_cv, temperature_seed)
    current_dv = current_fluid_state.dv
    temperature_seed = current_dv.temperature

    # Inspection at physics debugging time
    if debug:
        print("Initial MIRGE-Com state:")
        print(f"Initial DV pressure: {current_fluid_state.pressure}")
        print(f"Initial DV temperature: {current_fluid_state.temperature}")

    # }}}

    visualizer = make_visualizer(discr)
    initname = initializer.__class__.__name__
    eosname = gas_model.eos.__class__.__name__
    init_message = make_init_message(dim=dim,
                                     order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt,
                                     t_final=t_final,
                                     nstatus=nstatus,
                                     nviz=nviz,
                                     cfl=current_cfl,
                                     constant_cfl=constant_cfl,
                                     initname=initname,
                                     eosname=eosname,
                                     casename=casename)

    # Cantera equilibrate calculates the expected end state @ chemical equilibrium
    # i.e. the expected state after all reactions
    cantera_soln.equilibrate("UV")
    eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY
    eq_pressure = cantera_soln.P

    # Report the expected final state to the user
    if rank == 0:
        logger.info(init_message)
        logger.info(f"Expected equilibrium state:"
                    f" {eq_pressure=}, {eq_temperature=},"
                    f" {eq_density=}, {eq_mass_fractions=}")

    def my_write_status(dt, cfl, dv=None):
        status_msg = f"------ {dt=}" if constant_cfl else f"----- {cfl=}"
        if ((dv is not None) and (not log_dependent)):

            temp = dv.temperature
            press = dv.pressure

            from grudge.op import nodal_min_loc, nodal_max_loc
            tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)),
                           comm=comm,
                           op=MPI.MIN)
            tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)),
                           comm=comm,
                           op=MPI.MAX)
            pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)),
                           comm=comm,
                           op=MPI.MIN)
            pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)),
                           comm=comm,
                           op=MPI.MAX)
            dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})"
            status_msg = status_msg + dv_status_msg

        if rank == 0:
            logger.info(status_msg)

    def my_write_viz(step, t, dt, state, ts_field, dv, production_rates, cfl):
        viz_fields = [("cv", state), ("dv", dv),
                      ("production_rates", production_rates),
                      ("dt" if constant_cfl else "cfl", ts_field)]
        write_visfile(discr,
                      viz_fields,
                      visualizer,
                      vizname=casename,
                      step=step,
                      t=t,
                      overwrite=True,
                      vis_timer=vis_timer)

    def my_write_restart(step, t, state, temperature_seed):
        rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank)
        if rst_fname == rst_filename:
            if rank == 0:
                logger.info("Skipping overwrite of restart file.")
        else:
            rst_data = {
                "local_mesh": local_mesh,
                "cv": state.cv,
                "temperature_seed": temperature_seed,
                "t": t,
                "step": step,
                "order": order,
                "global_nelements": global_nelements,
                "num_parts": nproc
            }
            from mirgecom.restart import write_restart_file
            write_restart_file(actx, rst_data, rst_fname, comm)

    def my_health_check(cv, dv):
        import grudge.op as op
        health_error = False

        pressure = dv.pressure
        temperature = dv.temperature

        from mirgecom.simutil import check_naninf_local, check_range_local
        if check_naninf_local(discr, "vol", pressure):
            health_error = True
            logger.info(f"{rank=}: Invalid pressure data found.")

        if check_range_local(discr, "vol", pressure, 1e5, 2.6e5):
            health_error = True
            logger.info(f"{rank=}: Pressure range violation.")

        if check_naninf_local(discr, "vol", temperature):
            health_error = True
            logger.info(f"{rank=}: Invalid temperature data found.")
        if check_range_local(discr, "vol", temperature, 1.498e3, 1.6e3):
            health_error = True
            logger.info(f"{rank=}: Temperature range violation.")

        # This check is the temperature convergence check
        # The current *temperature* is what Pyrometheus gets
        # after a fixed number of Newton iterations, *n_iter*.
        # Calling `compute_temperature` here with *temperature*
        # input as the guess returns the calculated gas temperature after
        # yet another *n_iter*.
        # The difference between those two temperatures is the
        # temperature residual, which can be used as an indicator of
        # convergence in Pyrometheus `get_temperature`.
        # Note: The local max jig below works around a very long compile
        # in lazy mode.
        temp_resid = compute_temperature_update(cv, temperature) / temperature
        temp_err = (actx.to_numpy(op.nodal_max_loc(discr, "vol", temp_resid)))
        if temp_err > 1e-8:
            health_error = True
            logger.info(
                f"{rank=}: Temperature is not converged {temp_resid=}.")

        return health_error

    from mirgecom.inviscid import get_inviscid_timestep

    def get_dt(state):
        return get_inviscid_timestep(discr, state=state)

    compute_dt = actx.compile(get_dt)

    from mirgecom.inviscid import get_inviscid_cfl

    def get_cfl(state, dt):
        return get_inviscid_cfl(discr, dt=dt, state=state)

    compute_cfl = actx.compile(get_cfl)

    def get_production_rates(cv, temperature):
        return eos.get_production_rates(cv, temperature)

    compute_production_rates = actx.compile(get_production_rates)

    def my_get_timestep(t, dt, state):
        #  richer interface to calculate {dt,cfl} returns node-local estimates
        t_remaining = max(0, t_final - t)

        if constant_cfl:
            ts_field = current_cfl * compute_dt(state)
            from grudge.op import nodal_min_loc
            dt = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", ts_field)),
                         comm=comm,
                         op=MPI.MIN)
            cfl = current_cfl
        else:
            ts_field = compute_cfl(state, current_dt)
            from grudge.op import nodal_max_loc
            cfl = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", ts_field)),
                          comm=comm,
                          op=MPI.MAX)
        return ts_field, cfl, min(t_remaining, dt)

    def my_pre_step(step, t, dt, state):
        cv, tseed = state
        fluid_state = construct_fluid_state(cv, tseed)
        dv = fluid_state.dv

        try:

            if logmgr:
                logmgr.tick_before()

            from mirgecom.simutil import check_step
            do_viz = check_step(step=step, interval=nviz)
            do_restart = check_step(step=step, interval=nrestart)
            do_health = check_step(step=step, interval=nhealth)
            do_status = check_step(step=step, interval=nstatus)

            if do_health:
                health_errors = global_reduce(my_health_check(cv, dv),
                                              op="lor")
                if health_errors:
                    if rank == 0:
                        logger.info("Fluid solution failed health check.")
                    raise MyRuntimeError("Failed simulation health check.")

            ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=fluid_state)

            if do_status:
                my_write_status(dt=dt, cfl=cfl, dv=dv)

            if do_restart:
                my_write_restart(step=step,
                                 t=t,
                                 state=fluid_state,
                                 temperature_seed=tseed)

            if do_viz:
                production_rates = compute_production_rates(
                    fluid_state.cv, fluid_state.temperature)
                my_write_viz(step=step,
                             t=t,
                             dt=dt,
                             state=cv,
                             dv=dv,
                             production_rates=production_rates,
                             ts_field=ts_field,
                             cfl=cfl)

        except MyRuntimeError:
            if rank == 0:
                logger.info("Errors detected; attempting graceful exit.")
            # my_write_viz(step=step, t=t, dt=dt, state=cv)
            # my_write_restart(step=step, t=t, state=fluid_state)
            raise

        return state, dt

    def my_post_step(step, t, dt, state):
        cv, tseed = state
        fluid_state = construct_fluid_state(cv, tseed)

        # Logmgr needs to know about EOS, dt, dim?
        # imo this is a design/scope flaw
        if logmgr:
            set_dt(logmgr, dt)
            set_sim_state(logmgr, dim, cv, gas_model.eos)
            logmgr.tick_after()
        return make_obj_array([cv, fluid_state.temperature]), dt

    def my_rhs(t, state):
        cv, tseed = state
        from mirgecom.gas_model import make_fluid_state
        fluid_state = make_fluid_state(cv=cv,
                                       gas_model=gas_model,
                                       temperature_seed=tseed)
        return make_obj_array([
            euler_operator(discr,
                           state=fluid_state,
                           time=t,
                           boundaries=boundaries,
                           gas_model=gas_model,
                           quadrature_tag=quadrature_tag) +
            eos.get_species_source_terms(cv, fluid_state.temperature),
            0 * tseed
        ])

    current_dt = get_sim_timestep(discr, current_fluid_state, current_t,
                                  current_dt, current_cfl, t_final,
                                  constant_cfl)

    current_step, current_t, current_state = \
        advance_state(rhs=my_rhs, timestepper=timestepper,
                      pre_step_callback=my_pre_step,
                      post_step_callback=my_post_step, dt=current_dt,
                      state=make_obj_array([current_cv, temperature_seed]),
                      t=current_t, t_final=t_final)

    # Dump the final data
    if rank == 0:
        logger.info("Checkpointing final state ...")

    final_cv, tseed = current_state
    final_fluid_state = construct_fluid_state(final_cv, tseed)
    final_dv = final_fluid_state.dv
    final_dm = compute_production_rates(final_cv, final_dv.temperature)
    ts_field, cfl, dt = my_get_timestep(t=current_t,
                                        dt=current_dt,
                                        state=final_fluid_state)
    my_write_viz(step=current_step,
                 t=current_t,
                 dt=dt,
                 state=final_cv,
                 dv=final_dv,
                 production_rates=final_dm,
                 ts_field=ts_field,
                 cfl=cfl)
    my_write_status(dt=dt, cfl=cfl, dv=final_dv)
    my_write_restart(step=current_step,
                     t=current_t,
                     state=final_fluid_state,
                     temperature_seed=tseed)

    if logmgr:
        logmgr.close()
    elif use_profiling:
        print(actx.tabulate_profiling_data())

    finish_tol = 1e-16
    assert np.abs(current_t - t_final) < finish_tol
Exemple #17
0
def test_multilump_rhs(actx_factory, dim, order, v0, use_overintegration):
    """Test the Euler rhs using the non-trivial 1, 2, and 3D mass lump case.

    The case is tested against the analytic expressions of the RHS. Checks several
    different orders and refinement levels to check error behavior.
    """
    actx = actx_factory()
    nspecies = 10
    tolerance = 1e-8
    maxxerr = 0.0

    from pytools.convergence import EOCRecorder

    eoc_rec = EOCRecorder()

    for nel_1d in [4, 8, 12]:
        from meshmode.mesh.generation import (
            generate_regular_rect_mesh,
        )

        mesh = generate_regular_rect_mesh(
            a=(-1,) * dim, b=(1,) * dim, nelements_per_axis=(nel_1d,) * dim,
        )

        logger.info(f"Number of elements: {mesh.nelements}")

        from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
        from meshmode.discretization.poly_element import \
            default_simplex_group_factory, QuadratureSimplexGroupFactory

        discr = EagerDGDiscretization(
            actx, mesh,
            discr_tag_to_group_factory={
                DISCR_TAG_BASE: default_simplex_group_factory(
                    base_dim=dim, order=order),
                DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1)
            }
        )

        if use_overintegration:
            quadrature_tag = DISCR_TAG_QUAD
        else:
            quadrature_tag = None

        nodes = thaw(discr.nodes(), actx)

        centers = make_obj_array([np.zeros(shape=(dim,)) for i in range(nspecies)])
        spec_y0s = np.ones(shape=(nspecies,))
        spec_amplitudes = np.ones(shape=(nspecies,))

        velocity = np.zeros(shape=(dim,))
        velocity[0] = v0
        rho0 = 2.0

        lump = MulticomponentLump(dim=dim, nspecies=nspecies, rho0=rho0,
                                  spec_centers=centers, velocity=velocity,
                                  spec_y0s=spec_y0s, spec_amplitudes=spec_amplitudes)

        lump_soln = lump(nodes)
        gas_model = GasModel(eos=IdealSingleGas())
        fluid_state = make_fluid_state(lump_soln, gas_model)

        def _my_boundary(discr, btag, gas_model, state_minus, **kwargs):
            actx = state_minus.array_context
            bnd_discr = discr.discr_from_dd(btag)
            nodes = thaw(bnd_discr.nodes(), actx)
            return make_fluid_state(lump(x_vec=nodes, **kwargs), gas_model)

        boundaries = {
            BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=_my_boundary)
        }

        inviscid_rhs = euler_operator(
            discr, state=fluid_state, gas_model=gas_model, boundaries=boundaries,
            time=0.0, quadrature_tag=quadrature_tag
        )
        expected_rhs = lump.exact_rhs(discr, cv=lump_soln, time=0)

        print(f"inviscid_rhs = {inviscid_rhs}")
        print(f"expected_rhs = {expected_rhs}")

        err_max = actx.to_numpy(
            discr.norm((inviscid_rhs-expected_rhs), np.inf))
        if err_max > maxxerr:
            maxxerr = err_max

        eoc_rec.add_data_point(1.0 / nel_1d, err_max)

        logger.info(f"Max error: {maxxerr}")

    logger.info(
        f"Error for (dim,order) = ({dim},{order}):\n"
        f"{eoc_rec}"
    )

    assert (
        eoc_rec.order_estimate() >= order - 0.5
        or eoc_rec.max_error() < tolerance
    )
Exemple #18
0
def _euler_flow_stepper(actx, parameters):
    logging.basicConfig(format="%(message)s", level=logging.INFO)

    mesh = parameters["mesh"]
    t = parameters["time"]
    order = parameters["order"]
    t_final = parameters["tfinal"]
    initializer = parameters["initializer"]
    exittol = parameters["exittol"]
    casename = parameters["casename"]
    boundaries = parameters["boundaries"]
    eos = parameters["eos"]
    cfl = parameters["cfl"]
    dt = parameters["dt"]
    constantcfl = parameters["constantcfl"]
    nstepstatus = parameters["nstatus"]
    use_overintegration = parameters["use_overintegration"]

    if t_final <= t:
        return(0.0)

    rank = 0
    dim = mesh.dim
    istep = 0

    from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
    from meshmode.discretization.poly_element import \
        default_simplex_group_factory, QuadratureSimplexGroupFactory

    discr = EagerDGDiscretization(
        actx, mesh,
        discr_tag_to_group_factory={
            DISCR_TAG_BASE: default_simplex_group_factory(
                base_dim=dim, order=order),
            DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1)
        }
    )

    if use_overintegration:
        quadrature_tag = DISCR_TAG_QUAD
    else:
        quadrature_tag = None

    nodes = thaw(discr.nodes(), actx)

    cv = initializer(nodes)
    gas_model = GasModel(eos=eos)
    fluid_state = make_fluid_state(cv, gas_model)

    sdt = cfl * get_inviscid_timestep(discr, fluid_state)

    initname = initializer.__class__.__name__
    eosname = eos.__class__.__name__
    logger.info(
        f"Num {dim}d order-{order} elements: {mesh.nelements}\n"
        f"Timestep:        {dt}\n"
        f"Final time:      {t_final}\n"
        f"Status freq:     {nstepstatus}\n"
        f"Initialization:  {initname}\n"
        f"EOS:             {eosname}"
    )

    vis = make_visualizer(discr, order)

    def write_soln(state, write_status=True):
        dv = eos.dependent_vars(cv=state)
        expected_result = initializer(nodes, t=t)
        result_resid = state - expected_result
        maxerr = [np.max(np.abs(result_resid[i].get())) for i in range(dim + 2)]
        mindv = [np.min(dvfld.get()) for dvfld in dv]
        maxdv = [np.max(dvfld.get()) for dvfld in dv]

        if write_status is True:
            statusmsg = (
                f"Status: Step({istep}) Time({t})\n"
                f"------   P({mindv[0]},{maxdv[0]})\n"
                f"------   T({mindv[1]},{maxdv[1]})\n"
                f"------   dt,cfl = ({dt},{cfl})\n"
                f"------   Err({maxerr})"
            )
            logger.info(statusmsg)

        io_fields = ["cv", state]
        io_fields += eos.split_fields(dim, dv)
        io_fields.append(("exact_soln", expected_result))
        io_fields.append(("residual", result_resid))
        nameform = casename + "-{iorank:04d}-{iostep:06d}.vtu"
        visfilename = nameform.format(iorank=rank, iostep=istep)
        vis.write_vtk_file(visfilename, io_fields)

        return maxerr

    def rhs(t, q):
        fluid_state = make_fluid_state(q, gas_model)
        return euler_operator(discr, fluid_state, boundaries=boundaries,
                              gas_model=gas_model, time=t,
                              quadrature_tag=quadrature_tag)

    filter_order = 8
    eta = .5
    alpha = -1.0*np.log(np.finfo(float).eps)
    nummodes = int(1)
    for _ in range(dim):
        nummodes *= int(order + dim + 1)
    nummodes /= math.factorial(int(dim))
    cutoff = int(eta * order)

    from mirgecom.filter import (
        exponential_mode_response_function as xmrfunc,
        filter_modally
    )
    frfunc = partial(xmrfunc, alpha=alpha, filter_order=filter_order)

    while t < t_final:

        if constantcfl is True:
            dt = sdt
        else:
            cfl = dt / sdt

        if nstepstatus > 0:
            if istep % nstepstatus == 0:
                write_soln(state=cv)

        cv = rk4_step(cv, t, dt, rhs)
        cv = filter_modally(discr, "vol", cutoff, frfunc, cv)

        t += dt
        istep += 1

        sdt = cfl * get_inviscid_timestep(discr, fluid_state)

    if nstepstatus > 0:
        logger.info("Writing final dump.")
        maxerr = max(write_soln(cv, False))
    else:
        expected_result = initializer(nodes, time=t)
        maxerr = max_component_norm(discr, cv-expected_result, np.inf)

    logger.info(f"Max Error: {maxerr}")
    if maxerr > exittol:
        raise ValueError("Solution failed to follow expected result.")

    return(maxerr)
Exemple #19
0
def test_uniform_rhs(actx_factory, nspecies, dim, order, use_overintegration):
    """Test the inviscid rhs using a trivial constant/uniform state.

    This state should yield rhs = 0 to FP.  The test is performed for 1, 2,
    and 3 dimensions, with orders 1, 2, and 3, with and without passive species.
    """
    actx = actx_factory()

    tolerance = 1e-9

    from pytools.convergence import EOCRecorder
    eoc_rec0 = EOCRecorder()
    eoc_rec1 = EOCRecorder()
    # for nel_1d in [4, 8, 12]:
    for nel_1d in [4, 8]:
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(
            a=(-0.5,) * dim, b=(0.5,) * dim, nelements_per_axis=(nel_1d,) * dim
        )

        logger.info(
            f"Number of {dim}d elements: {mesh.nelements}"
        )

        from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD
        from meshmode.discretization.poly_element import \
            default_simplex_group_factory, QuadratureSimplexGroupFactory

        discr = EagerDGDiscretization(
            actx, mesh,
            discr_tag_to_group_factory={
                DISCR_TAG_BASE: default_simplex_group_factory(
                    base_dim=dim, order=order),
                DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1)
            }
        )

        if use_overintegration:
            quadrature_tag = DISCR_TAG_QUAD
        else:
            quadrature_tag = None

        zeros = discr.zeros(actx)
        ones = zeros + 1.0

        mass_input = discr.zeros(actx) + 1
        energy_input = discr.zeros(actx) + 2.5

        mom_input = make_obj_array(
            [discr.zeros(actx) for i in range(discr.dim)]
        )

        mass_frac_input = flat_obj_array(
            [ones / ((i + 1) * 10) for i in range(nspecies)]
        )
        species_mass_input = mass_input * mass_frac_input
        num_equations = dim + 2 + len(species_mass_input)

        cv = make_conserved(
            dim, mass=mass_input, energy=energy_input, momentum=mom_input,
            species_mass=species_mass_input)
        gas_model = GasModel(eos=IdealSingleGas())
        fluid_state = make_fluid_state(cv, gas_model)

        expected_rhs = make_conserved(
            dim, q=make_obj_array([discr.zeros(actx)
                                   for i in range(num_equations)])
        )

        boundaries = {BTAG_ALL: DummyBoundary()}
        inviscid_rhs = euler_operator(discr, state=fluid_state, gas_model=gas_model,
                                      boundaries=boundaries, time=0.0,
                                      quadrature_tag=quadrature_tag)

        rhs_resid = inviscid_rhs - expected_rhs

        rho_resid = rhs_resid.mass
        rhoe_resid = rhs_resid.energy
        mom_resid = rhs_resid.momentum
        rhoy_resid = rhs_resid.species_mass

        rho_rhs = inviscid_rhs.mass
        rhoe_rhs = inviscid_rhs.energy
        rhov_rhs = inviscid_rhs.momentum
        rhoy_rhs = inviscid_rhs.species_mass

        logger.info(
            f"rho_rhs  = {rho_rhs}\n"
            f"rhoe_rhs = {rhoe_rhs}\n"
            f"rhov_rhs = {rhov_rhs}\n"
            f"rhoy_rhs = {rhoy_rhs}\n"
        )

        def inf_norm(x):
            return actx.to_numpy(discr.norm(x, np.inf))

        assert inf_norm(rho_resid) < tolerance
        assert inf_norm(rhoe_resid) < tolerance
        for i in range(dim):
            assert inf_norm(mom_resid[i]) < tolerance
        for i in range(nspecies):
            assert inf_norm(rhoy_resid[i]) < tolerance

        err_max = inf_norm(rho_resid)
        eoc_rec0.add_data_point(1.0 / nel_1d, err_max)

        # set a non-zero, but uniform velocity component
        for i in range(len(mom_input)):
            mom_input[i] = discr.zeros(actx) + (-1.0) ** i

        cv = make_conserved(
            dim, mass=mass_input, energy=energy_input, momentum=mom_input,
            species_mass=species_mass_input)
        gas_model = GasModel(eos=IdealSingleGas())
        fluid_state = make_fluid_state(cv, gas_model)

        boundaries = {BTAG_ALL: DummyBoundary()}
        inviscid_rhs = euler_operator(discr, state=fluid_state, gas_model=gas_model,
                                      boundaries=boundaries, time=0.0)
        rhs_resid = inviscid_rhs - expected_rhs

        rho_resid = rhs_resid.mass
        rhoe_resid = rhs_resid.energy
        mom_resid = rhs_resid.momentum
        rhoy_resid = rhs_resid.species_mass

        assert inf_norm(rho_resid) < tolerance
        assert inf_norm(rhoe_resid) < tolerance

        for i in range(dim):
            assert inf_norm(mom_resid[i]) < tolerance
        for i in range(nspecies):
            assert inf_norm(rhoy_resid[i]) < tolerance

        err_max = inf_norm(rho_resid)
        eoc_rec1.add_data_point(1.0 / nel_1d, err_max)

    logger.info(
        f"V == 0 Errors:\n{eoc_rec0}"
        f"V != 0 Errors:\n{eoc_rec1}"
    )

    assert (
        eoc_rec0.order_estimate() >= order - 0.5
        or eoc_rec0.max_error() < 1e-9
    )
    assert (
        eoc_rec1.order_estimate() >= order - 0.5
        or eoc_rec1.max_error() < 1e-9
    )
Exemple #20
0
def main(ctx_factory=cl.create_some_context,
         use_logmgr=True,
         use_leap=False,
         use_profiling=False,
         casename=None,
         rst_filename=None,
         actx_class=PyOpenCLArrayContext):
    """Drive the example."""
    cl_ctx = ctx_factory()

    if casename is None:
        casename = "mirgecom"

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from mirgecom.simutil import global_reduce as _global_reduce
    global_reduce = partial(_global_reduce, comm=comm)

    logmgr = initialize_logmgr(use_logmgr,
                               filename=f"{casename}.sqlite",
                               mode="wu",
                               mpi_comm=comm)

    if use_profiling:
        queue = cl.CommandQueue(
            cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)
    else:
        queue = cl.CommandQueue(cl_ctx)

    actx = actx_class(queue,
                      allocator=cl_tools.MemoryPool(
                          cl_tools.ImmediateAllocator(queue)))

    # timestepping control
    current_step = 0
    if use_leap:
        from leap.rk import RK4MethodBuilder
        timestepper = RK4MethodBuilder("state")
    else:
        timestepper = rk4_step
    t_final = 0.01
    current_cfl = 1.0
    current_dt = .001
    current_t = 0
    constant_cfl = False

    # some i/o frequencies
    nrestart = 10
    nstatus = 1
    nviz = 10
    nhealth = 10

    dim = 2
    if dim != 2:
        raise ValueError("This example must be run with dim = 2.")

    rst_path = "restart_data/"
    rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl")
    if rst_filename:  # read the grid from restart data
        rst_filename = f"{rst_filename}-{rank:04d}.pkl"
        from mirgecom.restart import read_restart_data
        restart_data = read_restart_data(actx, rst_filename)
        local_mesh = restart_data["local_mesh"]
        local_nelements = local_mesh.nelements
        global_nelements = restart_data["global_nelements"]
        assert restart_data["num_parts"] == num_parts
    else:  # generate the grid from scratch
        nel_1d = 16
        box_ll = -5.0
        box_ur = 5.0
        from meshmode.mesh.generation import generate_regular_rect_mesh
        generate_mesh = partial(generate_regular_rect_mesh,
                                a=(box_ll, ) * dim,
                                b=(box_ur, ) * dim,
                                nelements_per_axis=(nel_1d, ) * dim)
        local_mesh, global_nelements = generate_and_distribute_mesh(
            comm, generate_mesh)
        local_nelements = local_mesh.nelements

    order = 3
    discr = EagerDGDiscretization(actx,
                                  local_mesh,
                                  order=order,
                                  mpi_communicator=comm)
    nodes = thaw(discr.nodes(), actx)

    vis_timer = None

    if logmgr:
        logmgr_add_device_name(logmgr, queue)
        logmgr_add_device_memory_usage(logmgr, queue)
        logmgr_add_many_discretization_quantities(logmgr, discr, dim,
                                                  extract_vars_for_logging,
                                                  units_for_logging)

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        logmgr.add_watches([
            ("step.max", "step = {value}, "),
            ("t_sim.max", "sim time: {value:1.6e} s\n"),
            ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "),
            ("max_pressure", "{value:1.9e})\n"),
            ("t_step.max", "------- step walltime: {value:6g} s, "),
            ("t_log.max", "log walltime: {value:6g} s")
        ])

        try:
            logmgr.add_watches(
                ["memory_usage_python.max", "memory_usage_gpu.max"])
        except KeyError:
            pass

        if use_profiling:
            logmgr.add_watches(["multiply_time.max"])

    # soln setup and init
    eos = IdealSingleGas()
    vel = np.zeros(shape=(dim, ))
    orig = np.zeros(shape=(dim, ))
    vel[:dim] = 1.0
    initializer = Vortex2D(center=orig, velocity=vel)
    gas_model = GasModel(eos=eos)

    def boundary_solution(discr, btag, gas_model, state_minus, **kwargs):
        actx = state_minus.array_context
        bnd_discr = discr.discr_from_dd(btag)
        nodes = thaw(bnd_discr.nodes(), actx)
        return make_fluid_state(
            initializer(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model)

    boundaries = {
        BTAG_ALL:
        PrescribedFluidBoundary(boundary_state_func=boundary_solution)
    }

    if rst_filename:
        current_t = restart_data["t"]
        current_step = restart_data["step"]
        current_cv = restart_data["cv"]
        if logmgr:
            from mirgecom.logging_quantities import logmgr_set_time
            logmgr_set_time(logmgr, current_step, current_t)
    else:
        # Set the current state from time 0
        current_cv = initializer(nodes)

    current_state = make_fluid_state(current_cv, gas_model)

    visualizer = make_visualizer(discr)

    initname = initializer.__class__.__name__
    eosname = eos.__class__.__name__
    init_message = make_init_message(dim=dim,
                                     order=order,
                                     nelements=local_nelements,
                                     global_nelements=global_nelements,
                                     dt=current_dt,
                                     t_final=t_final,
                                     nstatus=nstatus,
                                     nviz=nviz,
                                     cfl=current_cfl,
                                     constant_cfl=constant_cfl,
                                     initname=initname,
                                     eosname=eosname,
                                     casename=casename)
    if rank == 0:
        logger.info(init_message)

    def my_write_status(state, component_errors, cfl=None):
        if cfl is None:
            if constant_cfl:
                cfl = current_cfl
            else:
                from grudge.op import nodal_max
                from mirgecom.inviscid import get_inviscid_cfl
                cfl = actx.to_numpy(
                    nodal_max(discr, "vol",
                              get_inviscid_cfl(discr, state, current_dt)))[()]
        if rank == 0:
            logger.info(f"------ {cfl=}\n"
                        "------- errors=" +
                        ", ".join("%.3g" % en for en in component_errors))

    def my_write_viz(step, t, state, dv=None, exact=None, resid=None):
        if exact is None:
            exact = initializer(x_vec=nodes, eos=eos, time=t)
        if resid is None:
            resid = state - exact
        viz_fields = [("cv", state), ("dv", dv), ("exact", exact),
                      ("residual", resid)]
        from mirgecom.simutil import write_visfile
        write_visfile(discr,
                      viz_fields,
                      visualizer,
                      vizname=casename,
                      step=step,
                      t=t,
                      overwrite=True,
                      vis_timer=vis_timer)

    def my_write_restart(step, t, state):
        rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank)
        if rst_fname != rst_filename:
            rst_data = {
                "local_mesh": local_mesh,
                "cv": state,
                "t": t,
                "step": step,
                "order": order,
                "global_nelements": global_nelements,
                "num_parts": num_parts
            }
            from mirgecom.restart import write_restart_file
            write_restart_file(actx, rst_data, rst_fname, comm)

    def my_health_check(pressure, component_errors):
        health_error = False
        from mirgecom.simutil import check_naninf_local, check_range_local
        if check_naninf_local(discr, "vol", pressure) \
           or check_range_local(discr, "vol", pressure, .2, 1.02):
            health_error = True
            logger.info(f"{rank=}: Invalid pressure data found.")

        exittol = .1
        if max(component_errors) > exittol:
            health_error = True
            if rank == 0:
                logger.info("Solution diverged from exact soln.")

        return health_error

    def my_pre_step(step, t, dt, state):
        fluid_state = make_fluid_state(state, gas_model)
        cv = fluid_state.cv
        dv = fluid_state.dv

        try:
            exact = None
            component_errors = None

            if logmgr:
                logmgr.tick_before()

            do_viz = check_step(step=step, interval=nviz)
            do_restart = check_step(step=step, interval=nrestart)
            do_health = check_step(step=step, interval=nhealth)
            do_status = check_step(step=step, interval=nstatus)

            if do_health:
                exact = initializer(x_vec=nodes, eos=eos, time=t)
                from mirgecom.simutil import compare_fluid_solutions
                component_errors = compare_fluid_solutions(discr, cv, exact)
                health_errors = global_reduce(my_health_check(
                    dv.pressure, component_errors),
                                              op="lor")
                if health_errors:
                    if rank == 0:
                        logger.info("Fluid solution failed health check.")
                    raise MyRuntimeError("Failed simulation health check.")

            if do_restart:
                my_write_restart(step=step, t=t, state=cv)

            if do_status:
                if component_errors is None:
                    if exact is None:
                        exact = initializer(x_vec=nodes, eos=eos, time=t)
                    from mirgecom.simutil import compare_fluid_solutions
                    component_errors = compare_fluid_solutions(
                        discr, cv, exact)
                my_write_status(fluid_state, component_errors)

            if do_viz:
                if exact is None:
                    exact = initializer(x_vec=nodes, eos=eos, time=t)
                resid = state - exact
                my_write_viz(step=step,
                             t=t,
                             state=cv,
                             dv=dv,
                             exact=exact,
                             resid=resid)

        except MyRuntimeError:
            if rank == 0:
                logger.info("Errors detected; attempting graceful exit.")
            my_write_viz(step=step, t=t, state=cv)
            my_write_restart(step=step, t=t, state=cv)
            raise

        dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final,
                              constant_cfl)
        return state, dt

    def my_post_step(step, t, dt, state):
        # Logmgr needs to know about EOS, dt, dim?
        # imo this is a design/scope flaw
        if logmgr:
            set_dt(logmgr, dt)
            set_sim_state(logmgr, dim, state, eos)
            logmgr.tick_after()
        return state, dt

    def my_rhs(t, state):
        fluid_state = make_fluid_state(state, gas_model)
        return euler_operator(discr,
                              state=fluid_state,
                              time=t,
                              boundaries=boundaries,
                              gas_model=gas_model)

    current_dt = get_sim_timestep(discr, current_state, current_t, current_dt,
                                  current_cfl, t_final, constant_cfl)

    current_step, current_t, current_cv = \
        advance_state(rhs=my_rhs, timestepper=timestepper,
                      pre_step_callback=my_pre_step,
                      post_step_callback=my_post_step, dt=current_dt,
                      state=current_state.cv, t=current_t, t_final=t_final)

    # Dump the final data
    if rank == 0:
        logger.info("Checkpointing final state ...")

    current_state = make_fluid_state(current_cv, gas_model)
    final_dv = current_state.dv
    final_exact = initializer(x_vec=nodes, eos=eos, time=current_t)
    final_resid = current_state.cv - final_exact
    my_write_viz(step=current_step,
                 t=current_t,
                 state=current_state.cv,
                 dv=final_dv,
                 exact=final_exact,
                 resid=final_resid)
    my_write_restart(step=current_step, t=current_t, state=current_state.cv)

    if logmgr:
        logmgr.close()
    elif use_profiling:
        print(actx.tabulate_profiling_data())

    finish_tol = 1e-16
    assert np.abs(current_t - t_final) < finish_tol
Exemple #21
0
def test_slipwall_flux(actx_factory, dim, order):
    """Check for zero boundary flux.

    Check for vanishing flux across the slipwall.
    """
    actx = actx_factory()

    wall = AdiabaticSlipBoundary()
    eos = IdealSingleGas()
    gas_model = GasModel(eos=eos)

    from pytools.convergence import EOCRecorder
    eoc = EOCRecorder()

    for nel_1d in [4, 8, 12]:
        from meshmode.mesh.generation import generate_regular_rect_mesh

        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          nelements_per_axis=(nel_1d, ) * dim)

        discr = EagerDGDiscretization(actx, mesh, order=order)
        nodes = thaw(actx, discr.nodes())
        nhat = thaw(actx, discr.normal(BTAG_ALL))
        h = 1.0 / nel_1d

        def bnd_norm(vec):
            return actx.to_numpy(discr.norm(vec, p=np.inf, dd=BTAG_ALL))

        logger.info(f"Number of {dim}d elems: {mesh.nelements}")
        # for velocities in each direction
        err_max = 0.0
        for vdir in range(dim):
            vel = np.zeros(shape=(dim, ))

            # for velocity directions +1, and -1
            for parity in [1.0, -1.0]:
                vel[vdir] = parity
                from mirgecom.initializers import Uniform
                initializer = Uniform(dim=dim, velocity=vel)
                uniform_state = initializer(nodes)
                fluid_state = make_fluid_state(uniform_state, gas_model)

                interior_soln = project_fluid_state(discr,
                                                    "vol",
                                                    BTAG_ALL,
                                                    state=fluid_state,
                                                    gas_model=gas_model)

                bnd_soln = wall.adiabatic_slip_state(discr,
                                                     btag=BTAG_ALL,
                                                     gas_model=gas_model,
                                                     state_minus=interior_soln)

                from grudge.trace_pair import TracePair
                bnd_pair = TracePair(BTAG_ALL,
                                     interior=interior_soln.cv,
                                     exterior=bnd_soln.cv)
                state_pair = TracePair(BTAG_ALL,
                                       interior=interior_soln,
                                       exterior=bnd_soln)

                # Check the total velocity component normal
                # to each surface.  It should be zero.  The
                # numerical fluxes cannot be zero.
                avg_state = 0.5 * (bnd_pair.int + bnd_pair.ext)
                err_max = max(err_max,
                              bnd_norm(np.dot(avg_state.momentum, nhat)))

                from mirgecom.inviscid import inviscid_facial_flux
                bnd_flux = inviscid_facial_flux(discr, state_pair, local=True)
                err_max = max(err_max, bnd_norm(bnd_flux.mass),
                              bnd_norm(bnd_flux.energy))

        eoc.add_data_point(h, err_max)

    message = (f"EOC:\n{eoc}")
    logger.info(message)
    assert (eoc.order_estimate() >= order - 0.5 or eoc.max_error() < 1e-12)