def test_viscous_timestep(actx_factory, dim, mu, vel): """Test timestep size.""" actx = actx_factory() nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(1.0, ) * dim, b=(2.0, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 1 discr = EagerDGDiscretization(actx, mesh, order=order) zeros = discr.zeros(actx) ones = zeros + 1.0 velocity = make_obj_array([zeros + vel for _ in range(dim)]) massval = 1 mass = massval * ones # I *think* this energy should yield c=1.0 energy = zeros + 1.0 / (1.4 * .4) mom = mass * velocity species_mass = None cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom, species_mass=species_mass) from grudge.dt_utils import characteristic_lengthscales chlen = characteristic_lengthscales(actx, discr) from grudge.op import nodal_min chlen_min = nodal_min(discr, "vol", chlen) mu = mu * chlen_min if mu < 0: mu = 0 tv_model = None else: tv_model = SimpleTransport(viscosity=mu) eos = IdealSingleGas() gas_model = GasModel(eos=eos, transport=tv_model) fluid_state = make_fluid_state(cv, gas_model) from mirgecom.viscous import get_viscous_timestep dt_field = get_viscous_timestep(discr, fluid_state) speed_total = fluid_state.wavespeed dt_expected = chlen / (speed_total + (mu / chlen)) error = (dt_expected - dt_field) / dt_expected assert actx.to_numpy(discr.norm(error, np.inf)) == 0
def test_viscous_stress_tensor(actx_factory, transport_model): """Test tau data structure and values against exact.""" actx = actx_factory() dim = 3 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(1.0, ) * dim, b=(2.0, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 1 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) zeros = discr.zeros(actx) ones = zeros + 1.0 # assemble velocities for simple, unique grad components velocity_x = nodes[0] + 2 * nodes[1] + 3 * nodes[2] velocity_y = 4 * nodes[0] + 5 * nodes[1] + 6 * nodes[2] velocity_z = 7 * nodes[0] + 8 * nodes[1] + 9 * nodes[2] velocity = make_obj_array([velocity_x, velocity_y, velocity_z]) mass = 2 * ones energy = zeros + 2.5 mom = mass * velocity cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom) grad_cv = op.local_grad(discr, cv) if transport_model: tv_model = SimpleTransport(bulk_viscosity=1.0, viscosity=0.5) else: tv_model = PowerLawTransport() eos = IdealSingleGas() gas_model = GasModel(eos=eos, transport=tv_model) fluid_state = make_fluid_state(cv, gas_model) mu = tv_model.viscosity(eos, cv) lam = tv_model.volume_viscosity(eos, cv) # Exact answer for tau exp_grad_v = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) exp_grad_v_t = np.array([[1, 4, 7], [2, 5, 8], [3, 6, 9]]) exp_div_v = 15 exp_tau = (mu * (exp_grad_v + exp_grad_v_t) + lam * exp_div_v * np.eye(3)) from mirgecom.viscous import viscous_stress_tensor tau = viscous_stress_tensor(fluid_state, grad_cv) # The errors come from grad_v assert actx.to_numpy(discr.norm(tau - exp_tau, np.inf)) < 1e-12
def test_inviscid_mom_flux_components(actx_factory, dim, livedim): r"""Test components of the momentum flux with constant pressure, V != 0. Checks that the flux terms are returned in the proper order by running only 1 non-zero velocity component at-a-time. """ actx = actx_factory() eos = IdealSingleGas() p0 = 1.0 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 3 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) tolerance = 1e-15 for livedim in range(dim): mass = discr.zeros(actx) + 1.0 + np.dot(nodes, nodes) mom = make_obj_array([discr.zeros(actx) for _ in range(dim)]) mom[livedim] = mass p_exact = discr.zeros(actx) + p0 energy = (p_exact / (eos.gamma() - 1.0) + 0.5 * np.dot(mom, mom) / mass) cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom) p = eos.pressure(cv) from mirgecom.gas_model import GasModel, make_fluid_state state = make_fluid_state(cv, GasModel(eos=eos)) def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) assert inf_norm(p - p_exact) < tolerance flux = inviscid_flux(state) logger.info(f"{dim}d flux = {flux}") vel_exact = mom / mass # first two components should be nonzero in livedim only assert inf_norm(flux.mass - mom) == 0 eflux_exact = (energy + p_exact) * vel_exact assert inf_norm(flux.energy - eflux_exact) == 0 logger.info("Testing momentum") xpmomflux = mass * np.outer(vel_exact, vel_exact) + p_exact * np.identity(dim) assert inf_norm(flux.momentum - xpmomflux) < tolerance
def _get_pulse(): from mirgecom.eos import IdealSingleGas from mirgecom.gas_model import GasModel gas_model = GasModel(eos=IdealSingleGas()) from mirgecom.initializers import Uniform, AcousticPulse uniform_init = Uniform(dim=2) pulse_init = AcousticPulse(dim=2, center=np.zeros(2), amplitude=1.0, width=.1) def init(nodes): return pulse_init(x_vec=nodes, cv=uniform_init(nodes), eos=gas_model.eos) from meshmode.mesh import BTAG_ALL from mirgecom.boundary import AdiabaticSlipBoundary boundaries = { BTAG_ALL: AdiabaticSlipBoundary() } return gas_model, init, boundaries, 3e-12
def _get_scalar_lump(): from mirgecom.eos import IdealSingleGas from mirgecom.gas_model import GasModel, make_fluid_state gas_model = GasModel(eos=IdealSingleGas()) from mirgecom.initializers import MulticomponentLump init = MulticomponentLump( dim=2, nspecies=3, velocity=np.ones(2), spec_y0s=np.ones(3), spec_amplitudes=np.ones(3)) def _my_boundary(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state(init(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model) from meshmode.mesh import BTAG_ALL from mirgecom.boundary import PrescribedFluidBoundary boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=_my_boundary) } return gas_model, init, boundaries, 5e-12
def test_facial_flux(actx_factory, nspecies, order, dim): """Check the flux across element faces. The flux is checked by prescribing states (q) with known fluxes. Only uniform states are tested currently - ensuring that the Lax-Friedrichs flux terms which are proportional to jumps in state data vanish. Since the returned fluxes use state data which has been interpolated to-and-from the element faces, this test is grid-dependent. """ actx = actx_factory() tolerance = 1e-14 p0 = 1.0 from meshmode.mesh.generation import generate_regular_rect_mesh from pytools.convergence import EOCRecorder eoc_rec0 = EOCRecorder() eoc_rec1 = EOCRecorder() for nel_1d in [4, 8, 12]: mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) logger.info(f"Number of elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) zeros = discr.zeros(actx) ones = zeros + 1.0 mass_input = discr.zeros(actx) + 1.0 energy_input = discr.zeros(actx) + 2.5 mom_input = flat_obj_array( [discr.zeros(actx) for i in range(discr.dim)]) mass_frac_input = flat_obj_array( [ones / ((i + 1) * 10) for i in range(nspecies)]) species_mass_input = mass_input * mass_frac_input cv = make_conserved(dim, mass=mass_input, energy=energy_input, momentum=mom_input, species_mass=species_mass_input) from grudge.trace_pair import interior_trace_pairs cv_interior_pairs = interior_trace_pairs(discr, cv) # Check the boundary facial fluxes as called on an interior boundary # eos = IdealSingleGas() from mirgecom.gas_model import (GasModel, make_fluid_state) gas_model = GasModel(eos=IdealSingleGas()) from mirgecom.gas_model import make_fluid_state_trace_pairs state_tpairs = make_fluid_state_trace_pairs(cv_interior_pairs, gas_model) interior_state_pair = state_tpairs[0] from mirgecom.inviscid import inviscid_facial_flux interior_face_flux = \ inviscid_facial_flux(discr, state_tpair=interior_state_pair) def inf_norm(data): if len(data) > 0: return actx.to_numpy(discr.norm(data, np.inf, dd="all_faces")) else: return 0.0 assert inf_norm(interior_face_flux.mass) < tolerance assert inf_norm(interior_face_flux.energy) < tolerance assert inf_norm(interior_face_flux.species_mass) < tolerance # The expected pressure is 1.0 (by design). And the flux diagonal is # [rhov_x*v_x + p] (etc) since we have zero velocities it's just p. # # The off-diagonals are zero. We get a {ndim}-vector for each # dimension, the flux for the x-component of momentum (for example) is: # f_momx = < 1.0, 0 , 0> , then we return f_momx .dot. normal, which # can introduce negative values. # # (Explanation courtesy of Mike Campbell, # https://github.com/illinois-ceesd/mirgecom/pull/44#discussion_r463304292) nhat = thaw(actx, discr.normal("int_faces")) mom_flux_exact = discr.project("int_faces", "all_faces", p0 * nhat) print(f"{mom_flux_exact=}") print(f"{interior_face_flux.momentum=}") momerr = inf_norm(interior_face_flux.momentum - mom_flux_exact) assert momerr < tolerance eoc_rec0.add_data_point(1.0 / nel_1d, momerr) # Check the boundary facial fluxes as called on a domain boundary dir_mass = discr.project("vol", BTAG_ALL, mass_input) dir_e = discr.project("vol", BTAG_ALL, energy_input) dir_mom = discr.project("vol", BTAG_ALL, mom_input) dir_mf = discr.project("vol", BTAG_ALL, species_mass_input) dir_bc = make_conserved(dim, mass=dir_mass, energy=dir_e, momentum=dir_mom, species_mass=dir_mf) dir_bval = make_conserved(dim, mass=dir_mass, energy=dir_e, momentum=dir_mom, species_mass=dir_mf) state_tpair = TracePair(BTAG_ALL, interior=make_fluid_state(dir_bval, gas_model), exterior=make_fluid_state(dir_bc, gas_model)) boundary_flux = inviscid_facial_flux(discr, state_tpair=state_tpair) assert inf_norm(boundary_flux.mass) < tolerance assert inf_norm(boundary_flux.energy) < tolerance assert inf_norm(boundary_flux.species_mass) < tolerance nhat = thaw(actx, discr.normal(BTAG_ALL)) mom_flux_exact = discr.project(BTAG_ALL, "all_faces", p0 * nhat) momerr = inf_norm(boundary_flux.momentum - mom_flux_exact) assert momerr < tolerance eoc_rec1.add_data_point(1.0 / nel_1d, momerr) logger.info(f"standalone Errors:\n{eoc_rec0}" f"boundary Errors:\n{eoc_rec1}") assert (eoc_rec0.order_estimate() >= order - 0.5 or eoc_rec0.max_error() < 1e-9) assert (eoc_rec1.order_estimate() >= order - 0.5 or eoc_rec1.max_error() < 1e-9)
def test_inviscid_flux_components(actx_factory, dim): """Test uniform pressure case. Checks that the Euler-internal inviscid flux routine :func:`mirgecom.inviscid.inviscid_flux` returns exactly the expected result with a constant pressure and no flow. Expected inviscid flux is: F(q) = <rhoV, (E+p)V, rho(V.x.V) + pI> Checks that only diagonal terms of the momentum flux: [ rho(V.x.V) + pI ] are non-zero and return the correctly calculated p. """ actx = actx_factory() eos = IdealSingleGas() p0 = 1.0 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 3 discr = EagerDGDiscretization(actx, mesh, order=order) eos = IdealSingleGas() logger.info(f"Number of {dim}d elems: {mesh.nelements}") # === this next block tests 1,2,3 dimensions, # with single and multiple nodes/states. The # purpose of this block is to ensure that when # all components of V = 0, the flux recovers # the expected values (and p0 within tolerance) # === with V = 0, fixed P = p0 tolerance = 1e-15 nodes = thaw(actx, discr.nodes()) mass = discr.zeros(actx) + np.dot(nodes, nodes) + 1.0 mom = make_obj_array([discr.zeros(actx) for _ in range(dim)]) p_exact = discr.zeros(actx) + p0 energy = p_exact / 0.4 + 0.5 * np.dot(mom, mom) / mass cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom) p = eos.pressure(cv) from mirgecom.gas_model import GasModel, make_fluid_state state = make_fluid_state(cv, GasModel(eos=eos)) flux = inviscid_flux(state) def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) assert inf_norm(p - p_exact) < tolerance logger.info(f"{dim}d flux = {flux}") # for velocity zero, these components should be == zero assert inf_norm(flux.mass) == 0.0 assert inf_norm(flux.energy) == 0.0 # The momentum diagonal should be p # Off-diagonal should be identically 0 assert inf_norm(flux.momentum - p0 * np.identity(dim)) < tolerance
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext, log_dependent=True): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nparts = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) # timestepping control if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 current_step = 0 constant_cfl = False # some i/o frequencies nstatus = 1 nhealth = 1 nrestart = 5 nviz = 1 dim = 2 rst_path = "restart_data/" rst_pattern = ( rst_path + "{cname}-{step:04d}-{rank:04d}.pkl" ) if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nparts else: # generate the grid from scratch nel_1d = 16 box_ll = -5.0 box_ur = 5.0 from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim, b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim) local_mesh, global_nelements = generate_and_distribute_mesh(comm, generate_mesh) local_nelements = local_mesh.nelements order = 3 discr = EagerDGDiscretization( actx, local_mesh, order=order, mpi_communicator=comm ) nodes = thaw(discr.nodes(), actx) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) if log_dependent: logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ ("min_pressure", "\n------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n")]) # Pyrometheus initialization from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") sol = cantera.Solution(phase_id="gas", source=mech_cti) from mirgecom.thermochemistry import make_pyrometheus_mechanism_class pyrometheus_mechanism = make_pyrometheus_mechanism_class(sol)(actx.np) nspecies = pyrometheus_mechanism.num_species eos = PyrometheusMixture(pyrometheus_mechanism) from mirgecom.gas_model import GasModel, make_fluid_state gas_model = GasModel(eos=eos) from pytools.obj_array import make_obj_array y0s = np.zeros(shape=(nspecies,)) for i in range(nspecies-1): y0s[i] = 1.0 / (10.0 ** (i + 1)) spec_sum = sum([y0s[i] for i in range(nspecies-1)]) y0s[nspecies-1] = 1.0 - spec_sum # Mixture defaults to STP (p, T) = (1atm, 300K) velocity = np.zeros(shape=(dim,)) + 1.0 initializer = MixtureInitializer(dim=dim, nspecies=nspecies, massfractions=y0s, velocity=velocity) def boundary_solution(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state(initializer(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model, temperature_seed=state_minus.temperature) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=boundary_solution) } if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_cv = restart_data["cv"] tseed = restart_data["temperature_seed"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_cv = initializer(x_vec=nodes, eos=eos) tseed = 300.0 current_state = make_fluid_state(current_cv, gas_model, temperature_seed=tseed) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_status(component_errors, dv=None): from mirgecom.simutil import allsync status_msg = ( "------- errors=" + ", ".join("%.3g" % en for en in component_errors)) if ((dv is not None) and (not log_dependent)): temp = dv.temperature press = dv.pressure from grudge.op import nodal_min_loc, nodal_max_loc tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)), comm=comm, op=MPI.MIN) tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)), comm=comm, op=MPI.MAX) pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)), comm=comm, op=MPI.MIN) pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)), comm=comm, op=MPI.MAX) dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})" status_msg = status_msg + dv_status_msg if rank == 0: logger.info(status_msg) if rank == 0: logger.info(status_msg) def my_write_viz(step, t, state, dv, exact=None, resid=None): if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) if resid is None: resid = state - exact viz_fields = [("cv", state), ("dv", dv)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state, tseed): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "cv": state, "temperature_seed": tseed, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nparts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(dv, component_errors): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", dv.pressure) \ or check_range_local(discr, "vol", dv.pressure, 1e5, 1.1e5): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") exittol = .09 if max(component_errors) > exittol: health_error = True if rank == 0: logger.info("Solution diverged from exact soln.") return health_error def my_pre_step(step, t, dt, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) dv = fluid_state.dv try: exact = None component_errors = None if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) health_errors = global_reduce( my_health_check(dv, component_errors), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=cv, tseed=tseed) if do_viz: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) resid = state - exact my_write_viz(step=step, t=t, state=cv, dv=dv, exact=exact, resid=resid) if do_status: if component_errors is None: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) my_write_status(component_errors, dv=dv) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=cv, dv=dv) my_write_restart(step=step, t=t, state=cv, tseed=tseed) raise dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) tseed = fluid_state.temperature # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, cv, eos) logmgr.tick_after() return make_obj_array([fluid_state.cv, tseed]), dt def my_rhs(t, state): cv, tseed = state fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tseed) return make_obj_array( [euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model), 0*tseed]) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, advanced_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=make_obj_array([current_state.cv, current_state.temperature]), t=current_t, t_final=t_final, eos=eos, dim=dim) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") current_cv, tseed = advanced_state current_state = make_fluid_state(current_cv, gas_model, temperature_seed=tseed) final_dv = current_state.dv final_exact = initializer(x_vec=nodes, eos=eos, time=current_t) final_resid = current_state.cv - final_exact my_write_viz(step=current_step, t=current_t, state=current_cv, dv=final_dv, exact=final_exact, resid=final_resid) my_write_restart(step=current_step, t=current_t, state=current_state.cv, tseed=tseed) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def test_slipwall_identity(actx_factory, dim): """Identity test - check for the expected boundary solution. Checks that the slipwall implements the expected boundary solution: rho_plus = rho_minus v_plus = v_minus - 2 * (n_hat . v_minus) * n_hat mom_plus = rho_plus * v_plus E_plus = E_minus """ actx = actx_factory() nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 3 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) eos = IdealSingleGas() orig = np.zeros(shape=(dim, )) nhat = thaw(actx, discr.normal(BTAG_ALL)) gas_model = GasModel(eos=eos) logger.info(f"Number of {dim}d elems: {mesh.nelements}") # for velocity going along each direction for vdir in range(dim): vel = np.zeros(shape=(dim, )) # for velocity directions +1, and -1 for parity in [1.0, -1.0]: vel[vdir] = parity # Check incoming normal initializer = Lump(dim=dim, center=orig, velocity=vel, rhoamp=0.0) wall = AdiabaticSlipBoundary() uniform_state = initializer(nodes) fluid_state = make_fluid_state(uniform_state, gas_model) def bnd_norm(vec): return actx.to_numpy(discr.norm(vec, p=np.inf, dd=BTAG_ALL)) interior_soln = \ project_fluid_state(discr, "vol", BTAG_ALL, gas_model=gas_model, state=fluid_state) bnd_soln = \ wall.adiabatic_slip_state(discr, btag=BTAG_ALL, gas_model=gas_model, state_minus=interior_soln) from grudge.trace_pair import TracePair bnd_pair = TracePair(BTAG_ALL, interior=interior_soln.cv, exterior=bnd_soln.cv) # check that mass and energy are preserved mass_resid = bnd_pair.int.mass - bnd_pair.ext.mass mass_err = bnd_norm(mass_resid) assert mass_err == 0.0 energy_resid = bnd_pair.int.energy - bnd_pair.ext.energy energy_err = bnd_norm(energy_resid) assert energy_err == 0.0 # check that exterior momentum term is mom_interior - 2 * mom_normal mom_norm_comp = np.dot(bnd_pair.int.momentum, nhat) mom_norm = nhat * mom_norm_comp expected_mom_ext = bnd_pair.int.momentum - 2.0 * mom_norm mom_resid = bnd_pair.ext.momentum - expected_mom_ext mom_err = bnd_norm(mom_resid) assert mom_err == 0.0
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_overintegration=False, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive the example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() num_parts = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class( queue, allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue))) # timestepping control current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 0.1 current_cfl = 1.0 current_dt = .01 current_t = 0 constant_cfl = False # some i/o frequencies nstatus = 1 nrestart = 5 nviz = 10 nhealth = 1 dim = 3 rst_path = "restart_data/" rst_pattern = ( rst_path + "{cname}-{step:04d}-{rank:04d}.pkl" ) if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == num_parts else: # generate the grid from scratch from meshmode.mesh.generation import generate_regular_rect_mesh box_ll = -1 box_ur = 1 nel_1d = 16 generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll,)*dim, b=(box_ur,) * dim, nelements_per_axis=(nel_1d,)*dim) local_mesh, global_nelements = generate_and_distribute_mesh(comm, generate_mesh) local_nelements = local_mesh.nelements from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory order = 1 discr = EagerDGDiscretization( actx, local_mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory( base_dim=local_mesh.dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1) }, mpi_communicator=comm ) nodes = thaw(discr.nodes(), actx) if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None vis_timer = None if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) eos = IdealSingleGas() gas_model = GasModel(eos=eos) vel = np.zeros(shape=(dim,)) orig = np.zeros(shape=(dim,)) initializer = Lump(dim=dim, center=orig, velocity=vel, rhoamp=0.0) wall = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: wall} uniform_state = initializer(nodes) acoustic_pulse = AcousticPulse(dim=dim, amplitude=1.0, width=.1, center=orig) if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_cv = restart_data["cv"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_cv = acoustic_pulse(x_vec=nodes, cv=uniform_state, eos=eos) current_state = make_fluid_state(current_cv, gas_model) visualizer = make_visualizer(discr) initname = "pulse" eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_viz(step, t, state, dv=None): if dv is None: dv = eos.dependent_vars(state) viz_fields = [("cv", state), ("dv", dv)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "cv": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": num_parts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(pressure): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure) \ or check_range_local(discr, "vol", pressure, .8, 1.5): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") return health_error def my_pre_step(step, t, dt, state): fluid_state = make_fluid_state(state, gas_model) dv = fluid_state.dv try: if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) if do_health: health_errors = global_reduce(my_health_check(dv.pressure), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=state) if do_viz: my_write_viz(step=step, t=t, state=state, dv=dv) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=state) my_write_restart(step=step, t=t, state=state) raise dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): fluid_state = make_fluid_state(cv=state, gas_model=gas_model) return euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model, quadrature_tag=quadrature_tag) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_cv = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=current_cv, t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_state = make_fluid_state(current_cv, gas_model) final_dv = final_state.dv my_write_viz(step=current_step, t=current_t, state=current_cv, dv=final_dv) my_write_restart(step=current_step, t=current_t, state=current_cv) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def test_vortex_rhs(actx_factory, order, use_overintegration): """Test the inviscid rhs using the non-trivial 2D isentropic vortex. The case is configured to yield rhs = 0. Checks several different orders and refinement levels to check error behavior. """ actx = actx_factory() dim = 2 from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() from meshmode.mesh.generation import generate_regular_rect_mesh for nel_1d in [32, 48, 64]: mesh = generate_regular_rect_mesh( a=(-5,) * dim, b=(5,) * dim, nelements_per_axis=(nel_1d,) * dim, ) logger.info( f"Number of {dim}d elements: {mesh.nelements}" ) from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory( base_dim=dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1) } ) if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None nodes = thaw(discr.nodes(), actx) # Init soln with Vortex and expected RHS = 0 vortex = Vortex2D(center=[0, 0], velocity=[0, 0]) vortex_soln = vortex(nodes) gas_model = GasModel(eos=IdealSingleGas()) fluid_state = make_fluid_state(vortex_soln, gas_model) def _vortex_boundary(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state(vortex(x_vec=nodes, **kwargs), gas_model) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=_vortex_boundary) } inviscid_rhs = euler_operator( discr, state=fluid_state, gas_model=gas_model, boundaries=boundaries, time=0.0, quadrature_tag=quadrature_tag) err_max = max_component_norm(discr, inviscid_rhs, np.inf) eoc_rec.add_data_point(1.0 / nel_1d, err_max) logger.info( f"Error for (dim,order) = ({dim},{order}):\n" f"{eoc_rec}" ) assert ( eoc_rec.order_estimate() >= order - 0.5 or eoc_rec.max_error() < 1e-11 )
def test_pyrometheus_eos(ctx_factory, mechname, dim, y0, vel): """Test PyrometheusMixture EOS for all available mechanisms. Tests that the PyrometheusMixture EOS gets the same thermo properties (p, T, e) as the Pyrometheus-native mechanism code. """ cl_ctx = ctx_factory() queue = cl.CommandQueue(cl_ctx) actx = PyOpenCLArrayContext(queue) nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 4 logger.info(f"Number of elements {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) from meshmode.dof_array import thaw nodes = thaw(actx, discr.nodes()) # Pyrometheus initialization mech_cti = get_mechanism_cti(mechname) sol = cantera.Solution(phase_id="gas", source=mech_cti) from mirgecom.thermochemistry import make_pyrometheus_mechanism_class prometheus_mechanism = make_pyrometheus_mechanism_class(sol)(actx.np) nspecies = prometheus_mechanism.num_species print(f"PrometheusMixture::Mechanism = {mechname}") print(f"PrometheusMixture::NumSpecies = {nspecies}") press0 = 101500.0 temp0 = 300.0 y0s = np.zeros(shape=(nspecies, )) for i in range(1, nspecies): y0s[i] = y0 / (10.0**i) y0s[0] = 1.0 - np.sum(y0s[1:]) velocity = vel * np.ones(shape=(dim, )) for fac in range(1, 7): tempin = fac * temp0 pressin = fac * press0 print(f"Testing {mechname}(t,P) = ({tempin}, {pressin})") ones = discr.zeros(actx) + 1.0 tin = tempin * ones pin = pressin * ones yin = y0s * ones tguess = 300.0 pyro_rho = prometheus_mechanism.get_density(pin, tin, yin) pyro_e = prometheus_mechanism.get_mixture_internal_energy_mass( tin, yin) pyro_t = prometheus_mechanism.get_temperature(pyro_e, tguess, yin) pyro_p = prometheus_mechanism.get_pressure(pyro_rho, pyro_t, yin) print(f"prom(rho, y, p, t, e) = ({pyro_rho}, {y0s}, " f"{pyro_p}, {pyro_t}, {pyro_e})") eos = PyrometheusMixture(prometheus_mechanism) gas_model = GasModel(eos=eos) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=pyro_p, temperature=pyro_t, massfractions=y0s, velocity=velocity) cv = initializer(eos=eos, t=0, x_vec=nodes) fluid_state = make_fluid_state(cv, gas_model, temperature_seed=tguess) p = fluid_state.pressure temperature = fluid_state.temperature internal_energy = eos.get_internal_energy(temperature=tin, species_mass_fractions=yin) y = cv.species_mass_fractions print(f"pyro_y = {y}") print(f"pyro_eos.p = {p}") print(f"pyro_eos.temp = {temperature}") print(f"pyro_eos.e = {internal_energy}") def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) tol = 1e-14 assert inf_norm((cv.mass - pyro_rho) / pyro_rho) < tol assert inf_norm((temperature - pyro_t) / pyro_t) < tol assert inf_norm((internal_energy - pyro_e) / pyro_e) < tol assert inf_norm((p - pyro_p) / pyro_p) < tol
def test_diffusive_heat_flux(actx_factory): """Test diffusive heat flux and values against exact.""" actx = actx_factory() dim = 3 nel_1d = 4 from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(1.0, ) * dim, b=(2.0, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 1 discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) zeros = discr.zeros(actx) ones = zeros + 1.0 # assemble velocities for simple, unique grad components velocity_x = nodes[0] + 2 * nodes[1] + 3 * nodes[2] velocity_y = 4 * nodes[0] + 5 * nodes[1] + 6 * nodes[2] velocity_z = 7 * nodes[0] + 8 * nodes[1] + 9 * nodes[2] velocity = make_obj_array([velocity_x, velocity_y, velocity_z]) # assemble y so that each one has simple, but unique grad components nspecies = 2 * dim y = make_obj_array([ones for _ in range(nspecies)]) for idim in range(dim): ispec = 2 * idim y[ispec] = (ispec + 1) * (idim * dim + 1) * sum( [(iidim + 1) * nodes[iidim] for iidim in range(dim)]) y[ispec + 1] = -y[ispec] massval = 2 mass = massval * ones energy = zeros + 2.5 mom = mass * velocity species_mass = mass * y cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom, species_mass=species_mass) grad_cv = op.local_grad(discr, cv) mu_b = 1.0 mu = 0.5 kappa = 5.0 # assemble d_alpha so that every species has a unique j d_alpha = np.array([(ispec + 1) for ispec in range(nspecies)]) tv_model = SimpleTransport(bulk_viscosity=mu_b, viscosity=mu, thermal_conductivity=kappa, species_diffusivity=d_alpha) eos = IdealSingleGas() gas_model = GasModel(eos=eos, transport=tv_model) fluid_state = make_fluid_state(cv, gas_model) from mirgecom.viscous import diffusive_flux j = diffusive_flux(fluid_state, grad_cv) def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) tol = 1e-10 for idim in range(dim): ispec = 2 * idim exact_dy = np.array([((ispec + 1) * (idim * dim + 1)) * (iidim + 1) for iidim in range(dim)]) exact_j = -massval * d_alpha[ispec] * exact_dy assert inf_norm(j[ispec] - exact_j) < tol exact_j = massval * d_alpha[ispec + 1] * exact_dy assert inf_norm(j[ispec + 1] - exact_j) < tol
def test_poiseuille_fluxes(actx_factory, order, kappa): """Test the viscous fluxes using a Poiseuille input state.""" actx = actx_factory() dim = 2 from pytools.convergence import EOCRecorder e_eoc_rec = EOCRecorder() p_eoc_rec = EOCRecorder() base_pressure = 100000.0 pressure_ratio = 1.001 mu = 42 # arbitrary left_boundary_location = 0 right_boundary_location = 0.1 ybottom = 0. ytop = .02 nspecies = 0 spec_diffusivity = 0 * np.ones(nspecies) transport_model = SimpleTransport(viscosity=mu, thermal_conductivity=kappa, species_diffusivity=spec_diffusivity) xlen = right_boundary_location - left_boundary_location p_low = base_pressure p_hi = pressure_ratio * base_pressure dpdx = (p_low - p_hi) / xlen rho = 1.0 eos = IdealSingleGas() gas_model = GasModel(eos=eos, transport=transport_model) from mirgecom.initializers import PlanarPoiseuille initializer = PlanarPoiseuille(density=rho, mu=mu) def _elbnd_flux(discr, compute_interior_flux, compute_boundary_flux, int_tpair, boundaries): return (compute_interior_flux(int_tpair) + sum(compute_boundary_flux(btag) for btag in boundaries)) from mirgecom.flux import gradient_flux_central def cv_flux_interior(int_tpair): normal = thaw(actx, discr.normal(int_tpair.dd)) flux_weak = gradient_flux_central(int_tpair, normal) dd_all_faces = int_tpair.dd.with_dtag("all_faces") return discr.project(int_tpair.dd, dd_all_faces, flux_weak) def cv_flux_boundary(btag): boundary_discr = discr.discr_from_dd(btag) bnd_nodes = thaw(actx, boundary_discr.nodes()) cv_bnd = initializer(x_vec=bnd_nodes, eos=eos) bnd_nhat = thaw(actx, discr.normal(btag)) from grudge.trace_pair import TracePair bnd_tpair = TracePair(btag, interior=cv_bnd, exterior=cv_bnd) flux_weak = gradient_flux_central(bnd_tpair, bnd_nhat) dd_all_faces = bnd_tpair.dd.with_dtag("all_faces") return discr.project(bnd_tpair.dd, dd_all_faces, flux_weak) for nfac in [1, 2, 4]: npts_axis = nfac * (11, 21) box_ll = (left_boundary_location, ybottom) box_ur = (right_boundary_location, ytop) mesh = _get_box_mesh(2, a=box_ll, b=box_ur, n=npts_axis) logger.info(f"Number of {dim}d elements: {mesh.nelements}") discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) # compute max element size from grudge.dt_utils import h_max_from_volume h_max = h_max_from_volume(discr) # form exact cv cv = initializer(x_vec=nodes, eos=eos) cv_int_tpair = interior_trace_pair(discr, cv) boundaries = [BTAG_ALL] cv_flux_bnd = _elbnd_flux(discr, cv_flux_interior, cv_flux_boundary, cv_int_tpair, boundaries) from mirgecom.operators import grad_operator from grudge.dof_desc import as_dofdesc dd_vol = as_dofdesc("vol") dd_faces = as_dofdesc("all_faces") grad_cv = grad_operator(discr, dd_vol, dd_faces, cv, cv_flux_bnd) xp_grad_cv = initializer.exact_grad(x_vec=nodes, eos=eos, cv_exact=cv) xp_grad_v = 1 / cv.mass * xp_grad_cv.momentum xp_tau = mu * (xp_grad_v + xp_grad_v.transpose()) # sanity check the gradient: relerr_scale_e = 1.0 / inf_norm(xp_grad_cv.energy) relerr_scale_p = 1.0 / inf_norm(xp_grad_cv.momentum) graderr_e = inf_norm(grad_cv.energy - xp_grad_cv.energy) graderr_p = inf_norm(grad_cv.momentum - xp_grad_cv.momentum) graderr_e *= relerr_scale_e graderr_p *= relerr_scale_p assert graderr_e < 5e-7 assert graderr_p < 5e-11 zeros = discr.zeros(actx) ones = zeros + 1 pressure = eos.pressure(cv) # grad of p should be dp/dx xp_grad_p = make_obj_array([dpdx * ones, zeros]) grad_p = op.local_grad(discr, pressure) dpscal = 1.0 / np.abs(dpdx) temperature = eos.temperature(cv) tscal = rho * eos.gas_const() * dpscal xp_grad_t = xp_grad_p / (cv.mass * eos.gas_const()) grad_t = op.local_grad(discr, temperature) # sanity check assert inf_norm(grad_p - xp_grad_p) * dpscal < 5e-9 assert inf_norm(grad_t - xp_grad_t) * tscal < 5e-9 fluid_state = make_fluid_state(cv, gas_model) # verify heat flux from mirgecom.viscous import conductive_heat_flux heat_flux = conductive_heat_flux(fluid_state, grad_t) xp_heat_flux = -kappa * xp_grad_t assert inf_norm(heat_flux - xp_heat_flux) < 2e-8 xp_e_flux = np.dot(xp_tau, cv.velocity) - xp_heat_flux xp_mom_flux = xp_tau from mirgecom.viscous import viscous_flux vflux = viscous_flux(fluid_state, grad_cv, grad_t) efluxerr = (inf_norm(vflux.energy - xp_e_flux) / inf_norm(xp_e_flux)) momfluxerr = (inf_norm(vflux.momentum - xp_mom_flux) / inf_norm(xp_mom_flux)) assert inf_norm(vflux.mass) == 0 e_eoc_rec.add_data_point(actx.to_numpy(h_max), efluxerr) p_eoc_rec.add_data_point(actx.to_numpy(h_max), momfluxerr) assert (e_eoc_rec.order_estimate() >= order - 0.5 or e_eoc_rec.max_error() < 3e-9) assert (p_eoc_rec.order_estimate() >= order - 0.5 or p_eoc_rec.max_error() < 2e-12)
def test_inviscid_flux(actx_factory, nspecies, dim): """Check inviscid flux against exact expected result: Identity test. Directly check inviscid flux routine, :func:`mirgecom.inviscid.inviscid_flux`, against the exact expected result. This test is designed to fail if the flux routine is broken. The expected inviscid flux is: F(q) = <rhoV, (E+p)V, rho(V.x.V) + pI, rhoY V> """ actx = actx_factory() nel_1d = 16 from meshmode.mesh.generation import generate_regular_rect_mesh # for dim in [1, 2, 3]: mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) order = 3 discr = EagerDGDiscretization(actx, mesh, order=order) eos = IdealSingleGas() logger.info(f"Number of {dim}d elems: {mesh.nelements}") def rand(): from meshmode.dof_array import DOFArray return DOFArray( actx, tuple( actx.from_numpy(np.random.rand(grp.nelements, grp.nunit_dofs)) for grp in discr.discr_from_dd("vol").groups)) mass = rand() energy = rand() mom = make_obj_array([rand() for _ in range(dim)]) mass_fractions = make_obj_array([rand() for _ in range(nspecies)]) species_mass = mass * mass_fractions cv = make_conserved(dim, mass=mass, energy=energy, momentum=mom, species_mass=species_mass) # {{{ create the expected result p = eos.pressure(cv) escale = (energy + p) / mass numeq = dim + 2 + nspecies expected_flux = np.zeros((numeq, dim), dtype=object) expected_flux[0] = mom expected_flux[1] = mom * escale for i in range(dim): for j in range(dim): expected_flux[2 + i, j] = (mom[i] * mom[j] / mass + (p if i == j else 0)) for i in range(nspecies): expected_flux[dim + 2 + i] = mom * mass_fractions[i] expected_flux = make_conserved(dim, q=expected_flux) # }}} from mirgecom.gas_model import GasModel, make_fluid_state gas_model = GasModel(eos=eos) state = make_fluid_state(cv, gas_model) flux = inviscid_flux(state) flux_resid = flux - expected_flux for i in range(numeq, dim): for j in range(dim): assert (la.norm(flux_resid[i, j].get())) == 0.0
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_overintegration=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext, log_dependent=True): """Drive example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nproc = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # Some discretization parameters dim = 2 nel_1d = 8 order = 1 # {{{ Time stepping control # This example runs only 3 steps by default (to keep CI ~short) # With the mixture defined below, equilibrium is achieved at ~40ms # To run to equilibrium, set t_final >= 40ms. # Time stepper selection if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step # Time loop control parameters current_step = 0 t_final = 1e-8 current_cfl = 1.0 current_dt = 1e-9 current_t = 0 constant_cfl = False # i.o frequencies nstatus = 1 nviz = 5 nhealth = 1 nrestart = 5 # }}} Time stepping control debug = False rst_path = "restart_data/" rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl") if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == nproc rst_time = restart_data["t"] rst_step = restart_data["step"] rst_order = restart_data["order"] else: # generate the grid from scratch from meshmode.mesh.generation import generate_regular_rect_mesh box_ll = -0.005 box_ur = 0.005 generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, local_mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory(base_dim=local_mesh.dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2 * order + 1) }, mpi_communicator=comm) nodes = thaw(discr.nodes(), actx) ones = discr.zeros(actx) + 1.0 if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None ones = discr.zeros(actx) + 1.0 vis_timer = None if logmgr: logmgr_add_cl_device_info(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s")]) if log_dependent: logmgr_add_many_discretization_quantities( logmgr, discr, dim, extract_vars_for_logging, units_for_logging) logmgr.add_watches([ ("min_pressure", "\n------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("min_temperature", "------- T (min, max) (K) = ({value:7g}, "), ("max_temperature", "{value:7g})\n") ]) # {{{ Set up initial state using Cantera # Use Cantera for initialization # -- Pick up a CTI for the thermochemistry config # --- Note: Users may add their own CTI file by dropping it into # --- mirgecom/mechanisms alongside the other CTI files. from mirgecom.mechanisms import get_mechanism_cti mech_cti = get_mechanism_cti("uiuc") cantera_soln = cantera.Solution(phase_id="gas", source=mech_cti) nspecies = cantera_soln.n_species # Initial temperature, pressure, and mixutre mole fractions are needed to # set up the initial state in Cantera. temperature_seed = 1500.0 # Initial temperature hot enough to burn # Parameters for calculating the amounts of fuel, oxidizer, and inert species equiv_ratio = 1.0 ox_di_ratio = 0.21 stoich_ratio = 3.0 # Grab the array indices for the specific species, ethylene, oxygen, and nitrogen i_fu = cantera_soln.species_index("C2H4") i_ox = cantera_soln.species_index("O2") i_di = cantera_soln.species_index("N2") x = np.zeros(nspecies) # Set the species mole fractions according to our desired fuel/air mixture x[i_fu] = (ox_di_ratio * equiv_ratio) / (stoich_ratio + ox_di_ratio * equiv_ratio) x[i_ox] = stoich_ratio * x[i_fu] / equiv_ratio x[i_di] = (1.0 - ox_di_ratio) * x[i_ox] / ox_di_ratio # Uncomment next line to make pylint fail when it can't find cantera.one_atm one_atm = cantera.one_atm # pylint: disable=no-member # one_atm = 101325.0 # Let the user know about how Cantera is being initilized print(f"Input state (T,P,X) = ({temperature_seed}, {one_atm}, {x}") # Set Cantera internal gas temperature, pressure, and mole fractios cantera_soln.TPX = temperature_seed, one_atm, x # Pull temperature, total density, mass fractions, and pressure from Cantera # We need total density, and mass fractions to initialize the fluid/gas state. can_t, can_rho, can_y = cantera_soln.TDY can_p = cantera_soln.P # *can_t*, *can_p* should not differ (significantly) from user's initial data, # but we want to ensure that we use exactly the same starting point as Cantera, # so we use Cantera's version of these data. # }}} # {{{ Create Pyrometheus thermochemistry object & EOS # Create a Pyrometheus EOS with the Cantera soln. Pyrometheus uses Cantera and # generates a set of methods to calculate chemothermomechanical properties and # states for this particular mechanism. from mirgecom.thermochemistry import make_pyrometheus_mechanism_class pyro_mechanism = make_pyrometheus_mechanism_class(cantera_soln)(actx.np) eos = PyrometheusMixture(pyro_mechanism, temperature_guess=temperature_seed) gas_model = GasModel(eos=eos) from pytools.obj_array import make_obj_array def get_temperature_update(cv, temperature): y = cv.species_mass_fractions e = gas_model.eos.internal_energy(cv) / cv.mass return pyro_mechanism.get_temperature_update_energy(e, temperature, y) from mirgecom.gas_model import make_fluid_state def get_fluid_state(cv, tseed): return make_fluid_state(cv=cv, gas_model=gas_model, temperature_seed=tseed) compute_temperature_update = actx.compile(get_temperature_update) construct_fluid_state = actx.compile(get_fluid_state) # }}} # {{{ MIRGE-Com state initialization # Initialize the fluid/gas state with Cantera-consistent data: # (density, pressure, temperature, mass_fractions) print(f"Cantera state (rho,T,P,Y) = ({can_rho}, {can_t}, {can_p}, {can_y}") velocity = np.zeros(shape=(dim, )) initializer = MixtureInitializer(dim=dim, nspecies=nspecies, pressure=can_p, temperature=can_t, massfractions=can_y, velocity=velocity) my_boundary = AdiabaticSlipBoundary() boundaries = {BTAG_ALL: my_boundary} if rst_filename: current_step = rst_step current_t = rst_time if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) if order == rst_order: current_cv = restart_data["cv"] temperature_seed = restart_data["temperature_seed"] else: rst_cv = restart_data["cv"] old_discr = EagerDGDiscretization(actx, local_mesh, order=rst_order, mpi_communicator=comm) from meshmode.discretization.connection import make_same_mesh_connection connection = make_same_mesh_connection( actx, discr.discr_from_dd("vol"), old_discr.discr_from_dd("vol")) current_cv = connection(rst_cv) temperature_seed = connection(restart_data["temperature_seed"]) else: # Set the current state from time 0 current_cv = initializer(eos=gas_model.eos, x_vec=nodes) temperature_seed = temperature_seed * ones # The temperature_seed going into this function is: # - At time 0: the initial temperature input data (maybe from Cantera) # - On restart: the restarted temperature seed from restart file (saving # the *seed* allows restarts to be deterministic current_fluid_state = construct_fluid_state(current_cv, temperature_seed) current_dv = current_fluid_state.dv temperature_seed = current_dv.temperature # Inspection at physics debugging time if debug: print("Initial MIRGE-Com state:") print(f"Initial DV pressure: {current_fluid_state.pressure}") print(f"Initial DV temperature: {current_fluid_state.temperature}") # }}} visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = gas_model.eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) # Cantera equilibrate calculates the expected end state @ chemical equilibrium # i.e. the expected state after all reactions cantera_soln.equilibrate("UV") eq_temperature, eq_density, eq_mass_fractions = cantera_soln.TDY eq_pressure = cantera_soln.P # Report the expected final state to the user if rank == 0: logger.info(init_message) logger.info(f"Expected equilibrium state:" f" {eq_pressure=}, {eq_temperature=}," f" {eq_density=}, {eq_mass_fractions=}") def my_write_status(dt, cfl, dv=None): status_msg = f"------ {dt=}" if constant_cfl else f"----- {cfl=}" if ((dv is not None) and (not log_dependent)): temp = dv.temperature press = dv.pressure from grudge.op import nodal_min_loc, nodal_max_loc tmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", temp)), comm=comm, op=MPI.MIN) tmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", temp)), comm=comm, op=MPI.MAX) pmin = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", press)), comm=comm, op=MPI.MIN) pmax = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", press)), comm=comm, op=MPI.MAX) dv_status_msg = f"\nP({pmin}, {pmax}), T({tmin}, {tmax})" status_msg = status_msg + dv_status_msg if rank == 0: logger.info(status_msg) def my_write_viz(step, t, dt, state, ts_field, dv, production_rates, cfl): viz_fields = [("cv", state), ("dv", dv), ("production_rates", production_rates), ("dt" if constant_cfl else "cfl", ts_field)] write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state, temperature_seed): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname == rst_filename: if rank == 0: logger.info("Skipping overwrite of restart file.") else: rst_data = { "local_mesh": local_mesh, "cv": state.cv, "temperature_seed": temperature_seed, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": nproc } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(cv, dv): import grudge.op as op health_error = False pressure = dv.pressure temperature = dv.temperature from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") if check_range_local(discr, "vol", pressure, 1e5, 2.6e5): health_error = True logger.info(f"{rank=}: Pressure range violation.") if check_naninf_local(discr, "vol", temperature): health_error = True logger.info(f"{rank=}: Invalid temperature data found.") if check_range_local(discr, "vol", temperature, 1.498e3, 1.6e3): health_error = True logger.info(f"{rank=}: Temperature range violation.") # This check is the temperature convergence check # The current *temperature* is what Pyrometheus gets # after a fixed number of Newton iterations, *n_iter*. # Calling `compute_temperature` here with *temperature* # input as the guess returns the calculated gas temperature after # yet another *n_iter*. # The difference between those two temperatures is the # temperature residual, which can be used as an indicator of # convergence in Pyrometheus `get_temperature`. # Note: The local max jig below works around a very long compile # in lazy mode. temp_resid = compute_temperature_update(cv, temperature) / temperature temp_err = (actx.to_numpy(op.nodal_max_loc(discr, "vol", temp_resid))) if temp_err > 1e-8: health_error = True logger.info( f"{rank=}: Temperature is not converged {temp_resid=}.") return health_error from mirgecom.inviscid import get_inviscid_timestep def get_dt(state): return get_inviscid_timestep(discr, state=state) compute_dt = actx.compile(get_dt) from mirgecom.inviscid import get_inviscid_cfl def get_cfl(state, dt): return get_inviscid_cfl(discr, dt=dt, state=state) compute_cfl = actx.compile(get_cfl) def get_production_rates(cv, temperature): return eos.get_production_rates(cv, temperature) compute_production_rates = actx.compile(get_production_rates) def my_get_timestep(t, dt, state): # richer interface to calculate {dt,cfl} returns node-local estimates t_remaining = max(0, t_final - t) if constant_cfl: ts_field = current_cfl * compute_dt(state) from grudge.op import nodal_min_loc dt = allsync(actx.to_numpy(nodal_min_loc(discr, "vol", ts_field)), comm=comm, op=MPI.MIN) cfl = current_cfl else: ts_field = compute_cfl(state, current_dt) from grudge.op import nodal_max_loc cfl = allsync(actx.to_numpy(nodal_max_loc(discr, "vol", ts_field)), comm=comm, op=MPI.MAX) return ts_field, cfl, min(t_remaining, dt) def my_pre_step(step, t, dt, state): cv, tseed = state fluid_state = construct_fluid_state(cv, tseed) dv = fluid_state.dv try: if logmgr: logmgr.tick_before() from mirgecom.simutil import check_step do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: health_errors = global_reduce(my_health_check(cv, dv), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") ts_field, cfl, dt = my_get_timestep(t=t, dt=dt, state=fluid_state) if do_status: my_write_status(dt=dt, cfl=cfl, dv=dv) if do_restart: my_write_restart(step=step, t=t, state=fluid_state, temperature_seed=tseed) if do_viz: production_rates = compute_production_rates( fluid_state.cv, fluid_state.temperature) my_write_viz(step=step, t=t, dt=dt, state=cv, dv=dv, production_rates=production_rates, ts_field=ts_field, cfl=cfl) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") # my_write_viz(step=step, t=t, dt=dt, state=cv) # my_write_restart(step=step, t=t, state=fluid_state) raise return state, dt def my_post_step(step, t, dt, state): cv, tseed = state fluid_state = construct_fluid_state(cv, tseed) # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, cv, gas_model.eos) logmgr.tick_after() return make_obj_array([cv, fluid_state.temperature]), dt def my_rhs(t, state): cv, tseed = state from mirgecom.gas_model import make_fluid_state fluid_state = make_fluid_state(cv=cv, gas_model=gas_model, temperature_seed=tseed) return make_obj_array([ euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model, quadrature_tag=quadrature_tag) + eos.get_species_source_terms(cv, fluid_state.temperature), 0 * tseed ]) current_dt = get_sim_timestep(discr, current_fluid_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_state = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=make_obj_array([current_cv, temperature_seed]), t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") final_cv, tseed = current_state final_fluid_state = construct_fluid_state(final_cv, tseed) final_dv = final_fluid_state.dv final_dm = compute_production_rates(final_cv, final_dv.temperature) ts_field, cfl, dt = my_get_timestep(t=current_t, dt=current_dt, state=final_fluid_state) my_write_viz(step=current_step, t=current_t, dt=dt, state=final_cv, dv=final_dv, production_rates=final_dm, ts_field=ts_field, cfl=cfl) my_write_status(dt=dt, cfl=cfl, dv=final_dv) my_write_restart(step=current_step, t=current_t, state=final_fluid_state, temperature_seed=tseed) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def test_multilump_rhs(actx_factory, dim, order, v0, use_overintegration): """Test the Euler rhs using the non-trivial 1, 2, and 3D mass lump case. The case is tested against the analytic expressions of the RHS. Checks several different orders and refinement levels to check error behavior. """ actx = actx_factory() nspecies = 10 tolerance = 1e-8 maxxerr = 0.0 from pytools.convergence import EOCRecorder eoc_rec = EOCRecorder() for nel_1d in [4, 8, 12]: from meshmode.mesh.generation import ( generate_regular_rect_mesh, ) mesh = generate_regular_rect_mesh( a=(-1,) * dim, b=(1,) * dim, nelements_per_axis=(nel_1d,) * dim, ) logger.info(f"Number of elements: {mesh.nelements}") from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory( base_dim=dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1) } ) if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None nodes = thaw(discr.nodes(), actx) centers = make_obj_array([np.zeros(shape=(dim,)) for i in range(nspecies)]) spec_y0s = np.ones(shape=(nspecies,)) spec_amplitudes = np.ones(shape=(nspecies,)) velocity = np.zeros(shape=(dim,)) velocity[0] = v0 rho0 = 2.0 lump = MulticomponentLump(dim=dim, nspecies=nspecies, rho0=rho0, spec_centers=centers, velocity=velocity, spec_y0s=spec_y0s, spec_amplitudes=spec_amplitudes) lump_soln = lump(nodes) gas_model = GasModel(eos=IdealSingleGas()) fluid_state = make_fluid_state(lump_soln, gas_model) def _my_boundary(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state(lump(x_vec=nodes, **kwargs), gas_model) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=_my_boundary) } inviscid_rhs = euler_operator( discr, state=fluid_state, gas_model=gas_model, boundaries=boundaries, time=0.0, quadrature_tag=quadrature_tag ) expected_rhs = lump.exact_rhs(discr, cv=lump_soln, time=0) print(f"inviscid_rhs = {inviscid_rhs}") print(f"expected_rhs = {expected_rhs}") err_max = actx.to_numpy( discr.norm((inviscid_rhs-expected_rhs), np.inf)) if err_max > maxxerr: maxxerr = err_max eoc_rec.add_data_point(1.0 / nel_1d, err_max) logger.info(f"Max error: {maxxerr}") logger.info( f"Error for (dim,order) = ({dim},{order}):\n" f"{eoc_rec}" ) assert ( eoc_rec.order_estimate() >= order - 0.5 or eoc_rec.max_error() < tolerance )
def _euler_flow_stepper(actx, parameters): logging.basicConfig(format="%(message)s", level=logging.INFO) mesh = parameters["mesh"] t = parameters["time"] order = parameters["order"] t_final = parameters["tfinal"] initializer = parameters["initializer"] exittol = parameters["exittol"] casename = parameters["casename"] boundaries = parameters["boundaries"] eos = parameters["eos"] cfl = parameters["cfl"] dt = parameters["dt"] constantcfl = parameters["constantcfl"] nstepstatus = parameters["nstatus"] use_overintegration = parameters["use_overintegration"] if t_final <= t: return(0.0) rank = 0 dim = mesh.dim istep = 0 from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory( base_dim=dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1) } ) if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None nodes = thaw(discr.nodes(), actx) cv = initializer(nodes) gas_model = GasModel(eos=eos) fluid_state = make_fluid_state(cv, gas_model) sdt = cfl * get_inviscid_timestep(discr, fluid_state) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ logger.info( f"Num {dim}d order-{order} elements: {mesh.nelements}\n" f"Timestep: {dt}\n" f"Final time: {t_final}\n" f"Status freq: {nstepstatus}\n" f"Initialization: {initname}\n" f"EOS: {eosname}" ) vis = make_visualizer(discr, order) def write_soln(state, write_status=True): dv = eos.dependent_vars(cv=state) expected_result = initializer(nodes, t=t) result_resid = state - expected_result maxerr = [np.max(np.abs(result_resid[i].get())) for i in range(dim + 2)] mindv = [np.min(dvfld.get()) for dvfld in dv] maxdv = [np.max(dvfld.get()) for dvfld in dv] if write_status is True: statusmsg = ( f"Status: Step({istep}) Time({t})\n" f"------ P({mindv[0]},{maxdv[0]})\n" f"------ T({mindv[1]},{maxdv[1]})\n" f"------ dt,cfl = ({dt},{cfl})\n" f"------ Err({maxerr})" ) logger.info(statusmsg) io_fields = ["cv", state] io_fields += eos.split_fields(dim, dv) io_fields.append(("exact_soln", expected_result)) io_fields.append(("residual", result_resid)) nameform = casename + "-{iorank:04d}-{iostep:06d}.vtu" visfilename = nameform.format(iorank=rank, iostep=istep) vis.write_vtk_file(visfilename, io_fields) return maxerr def rhs(t, q): fluid_state = make_fluid_state(q, gas_model) return euler_operator(discr, fluid_state, boundaries=boundaries, gas_model=gas_model, time=t, quadrature_tag=quadrature_tag) filter_order = 8 eta = .5 alpha = -1.0*np.log(np.finfo(float).eps) nummodes = int(1) for _ in range(dim): nummodes *= int(order + dim + 1) nummodes /= math.factorial(int(dim)) cutoff = int(eta * order) from mirgecom.filter import ( exponential_mode_response_function as xmrfunc, filter_modally ) frfunc = partial(xmrfunc, alpha=alpha, filter_order=filter_order) while t < t_final: if constantcfl is True: dt = sdt else: cfl = dt / sdt if nstepstatus > 0: if istep % nstepstatus == 0: write_soln(state=cv) cv = rk4_step(cv, t, dt, rhs) cv = filter_modally(discr, "vol", cutoff, frfunc, cv) t += dt istep += 1 sdt = cfl * get_inviscid_timestep(discr, fluid_state) if nstepstatus > 0: logger.info("Writing final dump.") maxerr = max(write_soln(cv, False)) else: expected_result = initializer(nodes, time=t) maxerr = max_component_norm(discr, cv-expected_result, np.inf) logger.info(f"Max Error: {maxerr}") if maxerr > exittol: raise ValueError("Solution failed to follow expected result.") return(maxerr)
def test_uniform_rhs(actx_factory, nspecies, dim, order, use_overintegration): """Test the inviscid rhs using a trivial constant/uniform state. This state should yield rhs = 0 to FP. The test is performed for 1, 2, and 3 dimensions, with orders 1, 2, and 3, with and without passive species. """ actx = actx_factory() tolerance = 1e-9 from pytools.convergence import EOCRecorder eoc_rec0 = EOCRecorder() eoc_rec1 = EOCRecorder() # for nel_1d in [4, 8, 12]: for nel_1d in [4, 8]: from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh( a=(-0.5,) * dim, b=(0.5,) * dim, nelements_per_axis=(nel_1d,) * dim ) logger.info( f"Number of {dim}d elements: {mesh.nelements}" ) from grudge.dof_desc import DISCR_TAG_BASE, DISCR_TAG_QUAD from meshmode.discretization.poly_element import \ default_simplex_group_factory, QuadratureSimplexGroupFactory discr = EagerDGDiscretization( actx, mesh, discr_tag_to_group_factory={ DISCR_TAG_BASE: default_simplex_group_factory( base_dim=dim, order=order), DISCR_TAG_QUAD: QuadratureSimplexGroupFactory(2*order + 1) } ) if use_overintegration: quadrature_tag = DISCR_TAG_QUAD else: quadrature_tag = None zeros = discr.zeros(actx) ones = zeros + 1.0 mass_input = discr.zeros(actx) + 1 energy_input = discr.zeros(actx) + 2.5 mom_input = make_obj_array( [discr.zeros(actx) for i in range(discr.dim)] ) mass_frac_input = flat_obj_array( [ones / ((i + 1) * 10) for i in range(nspecies)] ) species_mass_input = mass_input * mass_frac_input num_equations = dim + 2 + len(species_mass_input) cv = make_conserved( dim, mass=mass_input, energy=energy_input, momentum=mom_input, species_mass=species_mass_input) gas_model = GasModel(eos=IdealSingleGas()) fluid_state = make_fluid_state(cv, gas_model) expected_rhs = make_conserved( dim, q=make_obj_array([discr.zeros(actx) for i in range(num_equations)]) ) boundaries = {BTAG_ALL: DummyBoundary()} inviscid_rhs = euler_operator(discr, state=fluid_state, gas_model=gas_model, boundaries=boundaries, time=0.0, quadrature_tag=quadrature_tag) rhs_resid = inviscid_rhs - expected_rhs rho_resid = rhs_resid.mass rhoe_resid = rhs_resid.energy mom_resid = rhs_resid.momentum rhoy_resid = rhs_resid.species_mass rho_rhs = inviscid_rhs.mass rhoe_rhs = inviscid_rhs.energy rhov_rhs = inviscid_rhs.momentum rhoy_rhs = inviscid_rhs.species_mass logger.info( f"rho_rhs = {rho_rhs}\n" f"rhoe_rhs = {rhoe_rhs}\n" f"rhov_rhs = {rhov_rhs}\n" f"rhoy_rhs = {rhoy_rhs}\n" ) def inf_norm(x): return actx.to_numpy(discr.norm(x, np.inf)) assert inf_norm(rho_resid) < tolerance assert inf_norm(rhoe_resid) < tolerance for i in range(dim): assert inf_norm(mom_resid[i]) < tolerance for i in range(nspecies): assert inf_norm(rhoy_resid[i]) < tolerance err_max = inf_norm(rho_resid) eoc_rec0.add_data_point(1.0 / nel_1d, err_max) # set a non-zero, but uniform velocity component for i in range(len(mom_input)): mom_input[i] = discr.zeros(actx) + (-1.0) ** i cv = make_conserved( dim, mass=mass_input, energy=energy_input, momentum=mom_input, species_mass=species_mass_input) gas_model = GasModel(eos=IdealSingleGas()) fluid_state = make_fluid_state(cv, gas_model) boundaries = {BTAG_ALL: DummyBoundary()} inviscid_rhs = euler_operator(discr, state=fluid_state, gas_model=gas_model, boundaries=boundaries, time=0.0) rhs_resid = inviscid_rhs - expected_rhs rho_resid = rhs_resid.mass rhoe_resid = rhs_resid.energy mom_resid = rhs_resid.momentum rhoy_resid = rhs_resid.species_mass assert inf_norm(rho_resid) < tolerance assert inf_norm(rhoe_resid) < tolerance for i in range(dim): assert inf_norm(mom_resid[i]) < tolerance for i in range(nspecies): assert inf_norm(rhoy_resid[i]) < tolerance err_max = inf_norm(rho_resid) eoc_rec1.add_data_point(1.0 / nel_1d, err_max) logger.info( f"V == 0 Errors:\n{eoc_rec0}" f"V != 0 Errors:\n{eoc_rec1}" ) assert ( eoc_rec0.order_estimate() >= order - 0.5 or eoc_rec0.max_error() < 1e-9 ) assert ( eoc_rec1.order_estimate() >= order - 0.5 or eoc_rec1.max_error() < 1e-9 )
def main(ctx_factory=cl.create_some_context, use_logmgr=True, use_leap=False, use_profiling=False, casename=None, rst_filename=None, actx_class=PyOpenCLArrayContext): """Drive the example.""" cl_ctx = ctx_factory() if casename is None: casename = "mirgecom" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() num_parts = comm.Get_size() from mirgecom.simutil import global_reduce as _global_reduce global_reduce = partial(_global_reduce, comm=comm) logmgr = initialize_logmgr(use_logmgr, filename=f"{casename}.sqlite", mode="wu", mpi_comm=comm) if use_profiling: queue = cl.CommandQueue( cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE) else: queue = cl.CommandQueue(cl_ctx) actx = actx_class(queue, allocator=cl_tools.MemoryPool( cl_tools.ImmediateAllocator(queue))) # timestepping control current_step = 0 if use_leap: from leap.rk import RK4MethodBuilder timestepper = RK4MethodBuilder("state") else: timestepper = rk4_step t_final = 0.01 current_cfl = 1.0 current_dt = .001 current_t = 0 constant_cfl = False # some i/o frequencies nrestart = 10 nstatus = 1 nviz = 10 nhealth = 10 dim = 2 if dim != 2: raise ValueError("This example must be run with dim = 2.") rst_path = "restart_data/" rst_pattern = (rst_path + "{cname}-{step:04d}-{rank:04d}.pkl") if rst_filename: # read the grid from restart data rst_filename = f"{rst_filename}-{rank:04d}.pkl" from mirgecom.restart import read_restart_data restart_data = read_restart_data(actx, rst_filename) local_mesh = restart_data["local_mesh"] local_nelements = local_mesh.nelements global_nelements = restart_data["global_nelements"] assert restart_data["num_parts"] == num_parts else: # generate the grid from scratch nel_1d = 16 box_ll = -5.0 box_ur = 5.0 from meshmode.mesh.generation import generate_regular_rect_mesh generate_mesh = partial(generate_regular_rect_mesh, a=(box_ll, ) * dim, b=(box_ur, ) * dim, nelements_per_axis=(nel_1d, ) * dim) local_mesh, global_nelements = generate_and_distribute_mesh( comm, generate_mesh) local_nelements = local_mesh.nelements order = 3 discr = EagerDGDiscretization(actx, local_mesh, order=order, mpi_communicator=comm) nodes = thaw(discr.nodes(), actx) vis_timer = None if logmgr: logmgr_add_device_name(logmgr, queue) logmgr_add_device_memory_usage(logmgr, queue) logmgr_add_many_discretization_quantities(logmgr, discr, dim, extract_vars_for_logging, units_for_logging) vis_timer = IntervalTimer("t_vis", "Time spent visualizing") logmgr.add_quantity(vis_timer) logmgr.add_watches([ ("step.max", "step = {value}, "), ("t_sim.max", "sim time: {value:1.6e} s\n"), ("min_pressure", "------- P (min, max) (Pa) = ({value:1.9e}, "), ("max_pressure", "{value:1.9e})\n"), ("t_step.max", "------- step walltime: {value:6g} s, "), ("t_log.max", "log walltime: {value:6g} s") ]) try: logmgr.add_watches( ["memory_usage_python.max", "memory_usage_gpu.max"]) except KeyError: pass if use_profiling: logmgr.add_watches(["multiply_time.max"]) # soln setup and init eos = IdealSingleGas() vel = np.zeros(shape=(dim, )) orig = np.zeros(shape=(dim, )) vel[:dim] = 1.0 initializer = Vortex2D(center=orig, velocity=vel) gas_model = GasModel(eos=eos) def boundary_solution(discr, btag, gas_model, state_minus, **kwargs): actx = state_minus.array_context bnd_discr = discr.discr_from_dd(btag) nodes = thaw(bnd_discr.nodes(), actx) return make_fluid_state( initializer(x_vec=nodes, eos=gas_model.eos, **kwargs), gas_model) boundaries = { BTAG_ALL: PrescribedFluidBoundary(boundary_state_func=boundary_solution) } if rst_filename: current_t = restart_data["t"] current_step = restart_data["step"] current_cv = restart_data["cv"] if logmgr: from mirgecom.logging_quantities import logmgr_set_time logmgr_set_time(logmgr, current_step, current_t) else: # Set the current state from time 0 current_cv = initializer(nodes) current_state = make_fluid_state(current_cv, gas_model) visualizer = make_visualizer(discr) initname = initializer.__class__.__name__ eosname = eos.__class__.__name__ init_message = make_init_message(dim=dim, order=order, nelements=local_nelements, global_nelements=global_nelements, dt=current_dt, t_final=t_final, nstatus=nstatus, nviz=nviz, cfl=current_cfl, constant_cfl=constant_cfl, initname=initname, eosname=eosname, casename=casename) if rank == 0: logger.info(init_message) def my_write_status(state, component_errors, cfl=None): if cfl is None: if constant_cfl: cfl = current_cfl else: from grudge.op import nodal_max from mirgecom.inviscid import get_inviscid_cfl cfl = actx.to_numpy( nodal_max(discr, "vol", get_inviscid_cfl(discr, state, current_dt)))[()] if rank == 0: logger.info(f"------ {cfl=}\n" "------- errors=" + ", ".join("%.3g" % en for en in component_errors)) def my_write_viz(step, t, state, dv=None, exact=None, resid=None): if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) if resid is None: resid = state - exact viz_fields = [("cv", state), ("dv", dv), ("exact", exact), ("residual", resid)] from mirgecom.simutil import write_visfile write_visfile(discr, viz_fields, visualizer, vizname=casename, step=step, t=t, overwrite=True, vis_timer=vis_timer) def my_write_restart(step, t, state): rst_fname = rst_pattern.format(cname=casename, step=step, rank=rank) if rst_fname != rst_filename: rst_data = { "local_mesh": local_mesh, "cv": state, "t": t, "step": step, "order": order, "global_nelements": global_nelements, "num_parts": num_parts } from mirgecom.restart import write_restart_file write_restart_file(actx, rst_data, rst_fname, comm) def my_health_check(pressure, component_errors): health_error = False from mirgecom.simutil import check_naninf_local, check_range_local if check_naninf_local(discr, "vol", pressure) \ or check_range_local(discr, "vol", pressure, .2, 1.02): health_error = True logger.info(f"{rank=}: Invalid pressure data found.") exittol = .1 if max(component_errors) > exittol: health_error = True if rank == 0: logger.info("Solution diverged from exact soln.") return health_error def my_pre_step(step, t, dt, state): fluid_state = make_fluid_state(state, gas_model) cv = fluid_state.cv dv = fluid_state.dv try: exact = None component_errors = None if logmgr: logmgr.tick_before() do_viz = check_step(step=step, interval=nviz) do_restart = check_step(step=step, interval=nrestart) do_health = check_step(step=step, interval=nhealth) do_status = check_step(step=step, interval=nstatus) if do_health: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions(discr, cv, exact) health_errors = global_reduce(my_health_check( dv.pressure, component_errors), op="lor") if health_errors: if rank == 0: logger.info("Fluid solution failed health check.") raise MyRuntimeError("Failed simulation health check.") if do_restart: my_write_restart(step=step, t=t, state=cv) if do_status: if component_errors is None: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) from mirgecom.simutil import compare_fluid_solutions component_errors = compare_fluid_solutions( discr, cv, exact) my_write_status(fluid_state, component_errors) if do_viz: if exact is None: exact = initializer(x_vec=nodes, eos=eos, time=t) resid = state - exact my_write_viz(step=step, t=t, state=cv, dv=dv, exact=exact, resid=resid) except MyRuntimeError: if rank == 0: logger.info("Errors detected; attempting graceful exit.") my_write_viz(step=step, t=t, state=cv) my_write_restart(step=step, t=t, state=cv) raise dt = get_sim_timestep(discr, fluid_state, t, dt, current_cfl, t_final, constant_cfl) return state, dt def my_post_step(step, t, dt, state): # Logmgr needs to know about EOS, dt, dim? # imo this is a design/scope flaw if logmgr: set_dt(logmgr, dt) set_sim_state(logmgr, dim, state, eos) logmgr.tick_after() return state, dt def my_rhs(t, state): fluid_state = make_fluid_state(state, gas_model) return euler_operator(discr, state=fluid_state, time=t, boundaries=boundaries, gas_model=gas_model) current_dt = get_sim_timestep(discr, current_state, current_t, current_dt, current_cfl, t_final, constant_cfl) current_step, current_t, current_cv = \ advance_state(rhs=my_rhs, timestepper=timestepper, pre_step_callback=my_pre_step, post_step_callback=my_post_step, dt=current_dt, state=current_state.cv, t=current_t, t_final=t_final) # Dump the final data if rank == 0: logger.info("Checkpointing final state ...") current_state = make_fluid_state(current_cv, gas_model) final_dv = current_state.dv final_exact = initializer(x_vec=nodes, eos=eos, time=current_t) final_resid = current_state.cv - final_exact my_write_viz(step=current_step, t=current_t, state=current_state.cv, dv=final_dv, exact=final_exact, resid=final_resid) my_write_restart(step=current_step, t=current_t, state=current_state.cv) if logmgr: logmgr.close() elif use_profiling: print(actx.tabulate_profiling_data()) finish_tol = 1e-16 assert np.abs(current_t - t_final) < finish_tol
def test_slipwall_flux(actx_factory, dim, order): """Check for zero boundary flux. Check for vanishing flux across the slipwall. """ actx = actx_factory() wall = AdiabaticSlipBoundary() eos = IdealSingleGas() gas_model = GasModel(eos=eos) from pytools.convergence import EOCRecorder eoc = EOCRecorder() for nel_1d in [4, 8, 12]: from meshmode.mesh.generation import generate_regular_rect_mesh mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim, b=(0.5, ) * dim, nelements_per_axis=(nel_1d, ) * dim) discr = EagerDGDiscretization(actx, mesh, order=order) nodes = thaw(actx, discr.nodes()) nhat = thaw(actx, discr.normal(BTAG_ALL)) h = 1.0 / nel_1d def bnd_norm(vec): return actx.to_numpy(discr.norm(vec, p=np.inf, dd=BTAG_ALL)) logger.info(f"Number of {dim}d elems: {mesh.nelements}") # for velocities in each direction err_max = 0.0 for vdir in range(dim): vel = np.zeros(shape=(dim, )) # for velocity directions +1, and -1 for parity in [1.0, -1.0]: vel[vdir] = parity from mirgecom.initializers import Uniform initializer = Uniform(dim=dim, velocity=vel) uniform_state = initializer(nodes) fluid_state = make_fluid_state(uniform_state, gas_model) interior_soln = project_fluid_state(discr, "vol", BTAG_ALL, state=fluid_state, gas_model=gas_model) bnd_soln = wall.adiabatic_slip_state(discr, btag=BTAG_ALL, gas_model=gas_model, state_minus=interior_soln) from grudge.trace_pair import TracePair bnd_pair = TracePair(BTAG_ALL, interior=interior_soln.cv, exterior=bnd_soln.cv) state_pair = TracePair(BTAG_ALL, interior=interior_soln, exterior=bnd_soln) # Check the total velocity component normal # to each surface. It should be zero. The # numerical fluxes cannot be zero. avg_state = 0.5 * (bnd_pair.int + bnd_pair.ext) err_max = max(err_max, bnd_norm(np.dot(avg_state.momentum, nhat))) from mirgecom.inviscid import inviscid_facial_flux bnd_flux = inviscid_facial_flux(discr, state_pair, local=True) err_max = max(err_max, bnd_norm(bnd_flux.mass), bnd_norm(bnd_flux.energy)) eoc.add_data_point(h, err_max) message = (f"EOC:\n{eoc}") logger.info(message) assert (eoc.order_estimate() >= order - 0.5 or eoc.max_error() < 1e-12)