Exemple #1
0
    def build(self):
        """
        build network architecture and loss
        """
        """
        Visual features
        """
        with tf.device('/cpu:0'):

            def load_feature(image_idx):
                selected_features = np.take(self.features, image_idx, axis=0)
                return selected_features

            V_ft = tf.py_func(load_feature,
                              inp=[self.batch['image_idx']],
                              Tout=tf.float32,
                              name='sample_features')
            V_ft.set_shape([None, self.max_box_num, self.vfeat_dim])
            num_V_ft = tf.gather(self.num_boxes,
                                 self.batch['image_idx'],
                                 name='gather_num_V_ft',
                                 axis=0)
            self.mid_result['num_V_ft'] = num_V_ft
            normal_boxes = tf.gather(self.normal_boxes,
                                     self.batch['image_idx'],
                                     name='gather_normal_boxes',
                                     axis=0)
            self.mid_result['normal_boxes'] = normal_boxes

        log.warning('v_linear_v')
        v_linear_v = modules.fc_layer(V_ft,
                                      V_DIM,
                                      use_bias=True,
                                      use_bn=False,
                                      use_ln=True,
                                      activation_fn=tf.nn.relu,
                                      is_training=self.is_train,
                                      scope='v_linear_v')
        """
        Encode question
        """
        q_embed = tf.nn.embedding_lookup(self.glove_map,
                                         self.batch['q_intseq'])
        # [bs, L_DIM]
        q_L_ft = modules.encode_L(q_embed,
                                  self.batch['q_intseq_len'],
                                  L_DIM,
                                  cell_type='GRU')
        self.heavy_output['condition'] = q_L_ft

        # [bs, V_DIM}
        log.warning('q_linear_v')
        q_linear_v = modules.fc_layer(q_L_ft,
                                      V_DIM,
                                      use_bias=True,
                                      use_bn=False,
                                      use_ln=True,
                                      activation_fn=tf.nn.relu,
                                      is_training=self.is_train,
                                      scope='q_linear_v')
        self.mid_result['q_linear_v'] = q_linear_v
        """
        Perform attention
        """
        att_score = modules.hadamard_attention(v_linear_v,
                                               num_V_ft,
                                               q_linear_v,
                                               use_ln=False,
                                               is_train=self.is_train)
        self.output['att_score'] = att_score
        self.mid_result['att_score'] = att_score
        pooled_V_ft = modules.attention_pooling(V_ft, att_score)
        self.mid_result['pooled_V_ft'] = pooled_V_ft

        log.warning('pooled_linear_l')
        pooled_linear_l = modules.fc_layer(pooled_V_ft,
                                           L_DIM,
                                           use_bias=True,
                                           use_bn=False,
                                           use_ln=True,
                                           activation_fn=tf.nn.relu,
                                           is_training=self.is_train,
                                           scope='pooled_linear_l')
        self.mid_result['pooled_linear_l'] = pooled_linear_l

        ##############################
        # 1. Fixed vlmap classifier
        ##############################
        """
        Answer classification
        """
        log.warning('q_linear_l')
        l_linear_l = modules.fc_layer(q_L_ft,
                                      L_DIM,
                                      use_bias=True,
                                      use_bn=False,
                                      use_ln=True,
                                      activation_fn=tf.nn.relu,
                                      is_training=self.is_train,
                                      scope='q_linear_l')
        self.mid_result['l_linear_l'] = l_linear_l

        joint = modules.fc_layer(pooled_linear_l * l_linear_l,
                                 L_DIM * 2,
                                 use_bias=True,
                                 use_bn=False,
                                 use_ln=True,
                                 activation_fn=tf.nn.relu,
                                 is_training=self.is_train,
                                 scope='joint_fc')
        joint = tf.nn.dropout(joint, 0.5)
        self.mid_result['joint'] = joint

        logit = modules.WordWeightAnswer(joint,
                                         self.answer_dict,
                                         self.word_weight_dir,
                                         use_bias=True,
                                         is_training=self.is_train,
                                         default_bias=-100.0,
                                         scope='WordWeightAnswer')
        min_logit = tf.tile(tf.reduce_min(logit, axis=1, keepdims=True),
                            [1, self.num_answer])
        logit = logit * self.answer_exist_mask + min_logit * self.answer_non_exist_mask

        ##########################
        # 2. Fine tuned vlmap
        ##########################

        log.warning('tuned_q_linear_l')
        tuned_l_linear_l = modules.fc_layer(q_L_ft,
                                            L_DIM,
                                            use_bias=True,
                                            use_bn=False,
                                            use_ln=True,
                                            activation_fn=tf.nn.relu,
                                            is_training=self.is_train,
                                            scope='tuned_q_linear_l')
        self.mid_result['tuned_l_linear_l'] = tuned_l_linear_l

        tuned_joint = modules.fc_layer(pooled_linear_l * tuned_l_linear_l,
                                       L_DIM * 2,
                                       use_bias=True,
                                       use_bn=False,
                                       use_ln=True,
                                       activation_fn=tf.nn.relu,
                                       is_training=self.is_train,
                                       scope='tuned_joint_fc')
        tuned_joint = tf.nn.dropout(tuned_joint, 0.5)
        self.mid_result['tuned_joint'] = tuned_joint

        tuned_logit = modules.fc_layer(joint,
                                       self.num_answer,
                                       use_bias=True,
                                       use_bn=False,
                                       use_ln=False,
                                       activation_fn=None,
                                       is_training=self.is_train,
                                       scope='TunedWordWeightAnswer')

        ##########################
        # 3. Combine logits
        ##########################

        self.output['logit'] = logit + tuned_logit
        self.mid_result['logit'] = logit + tuned_logit
        """
        Compute loss and accuracy
        """
        with tf.name_scope('loss'):
            answer_target = self.batch['answer_target']

            untuned_loss = tf.nn.sigmoid_cross_entropy_with_logits(
                labels=answer_target, logits=logit)
            tuned_loss = tf.nn.sigmoid_cross_entropy_with_logits(
                labels=answer_target, logits=logit + tuned_logit)

            loss = untuned_loss + tuned_loss

            train_loss = tf.reduce_mean(
                tf.reduce_sum(loss * self.train_answer_mask, axis=-1))
            report_loss = tf.reduce_mean(tf.reduce_sum(loss, axis=-1))
            pred = tf.cast(tf.argmax(logit + tuned_logit, axis=-1),
                           dtype=tf.int32)
            one_hot_pred = tf.one_hot(pred,
                                      depth=self.num_answer,
                                      dtype=tf.float32)
            self.output['pred'] = pred

            all_score = tf.reduce_sum(one_hot_pred * answer_target, axis=-1)
            max_train_score = tf.reduce_max(answer_target *
                                            self.train_answer_mask,
                                            axis=-1)
            test_obj_score = tf.reduce_sum(one_hot_pred * answer_target *
                                           self.test_answer_mask *
                                           self.obj_answer_mask,
                                           axis=-1)
            test_obj_max_score = tf.reduce_max(
                answer_target * self.test_answer_mask * self.obj_answer_mask,
                axis=-1)
            test_attr_score = tf.reduce_sum(one_hot_pred * answer_target *
                                            self.test_answer_mask *
                                            self.attr_answer_mask,
                                            axis=-1)
            test_attr_max_score = tf.reduce_max(
                answer_target * self.test_answer_mask * self.attr_answer_mask,
                axis=-1)
            self.output['test_obj_score'] = test_obj_score
            self.output['test_obj_max_score'] = test_obj_max_score
            self.output['test_attr_score'] = test_attr_score
            self.output['test_attr_max_score'] = test_attr_max_score
            self.output['all_score'] = all_score
            self.output['max_train_score'] = max_train_score

            acc = tf.reduce_mean(all_score)
            exist_acc = tf.reduce_mean(
                tf.reduce_sum(one_hot_pred * answer_target *
                              self.answer_exist_mask,
                              axis=-1))
            test_acc = tf.reduce_mean(
                tf.reduce_sum(one_hot_pred * answer_target *
                              self.test_answer_mask,
                              axis=-1))
            test_obj_acc = tf.reduce_mean(test_obj_score)
            test_attr_acc = tf.reduce_mean(test_attr_score)
            train_exist_acc = tf.reduce_mean(
                tf.reduce_sum(one_hot_pred * answer_target *
                              self.answer_exist_mask * self.train_answer_mask,
                              axis=-1))
            max_exist_answer_acc = tf.reduce_mean(
                tf.reduce_max(answer_target * self.answer_exist_mask, axis=-1))
            max_train_exist_acc = tf.reduce_mean(
                tf.reduce_max(answer_target * self.answer_exist_mask *
                              self.train_answer_mask,
                              axis=-1))
            test_obj_max_acc = tf.reduce_mean(test_obj_max_score)
            test_attr_max_acc = tf.reduce_mean(test_attr_max_score)
            test_max_answer_acc = tf.reduce_mean(
                tf.reduce_max(answer_target * self.test_answer_mask, axis=-1))
            test_max_exist_answer_acc = tf.reduce_mean(
                tf.reduce_max(answer_target * self.answer_exist_mask *
                              self.test_answer_mask,
                              axis=-1))
            normal_test_obj_acc = tf.where(tf.equal(test_obj_max_acc,
                                                    0), test_obj_max_acc,
                                           test_obj_acc / test_obj_max_acc)
            normal_test_attr_acc = tf.where(tf.equal(test_attr_max_acc,
                                                     0), test_attr_max_acc,
                                            test_attr_acc / test_attr_max_acc)
            normal_train_exist_acc = tf.where(
                tf.equal(max_train_exist_acc, 0), max_train_exist_acc,
                train_exist_acc / max_train_exist_acc)
            normal_exist_acc = tf.where(tf.equal(max_exist_answer_acc,
                                                 0), max_exist_answer_acc,
                                        exist_acc / max_exist_answer_acc)
            normal_test_acc = tf.where(tf.equal(test_max_answer_acc,
                                                0), test_max_answer_acc,
                                       test_acc / test_max_answer_acc)

            self.mid_result['pred'] = pred

            self.losses['answer'] = train_loss
            self.report['answer_train_loss'] = train_loss
            self.report['answer_report_loss'] = report_loss
            self.report['answer_acc'] = acc
            self.report['exist_acc'] = exist_acc
            self.report['test_acc'] = test_acc
            self.report['normal_test_acc'] = normal_test_acc
            self.report['normal_test_object_acc'] = normal_test_obj_acc
            self.report['normal_test_attribute_acc'] = normal_test_attr_acc
            self.report['normal_exist_acc'] = normal_exist_acc
            self.report['normal_train_exist_acc'] = normal_train_exist_acc
            self.report['max_exist_acc'] = max_exist_answer_acc
            self.report['test_max_acc'] = test_max_answer_acc
            self.report['test_max_exist_acc'] = test_max_exist_answer_acc
        """
        Prepare image summary
        """
        """
        with tf.name_scope('prepare_summary'):
            self.vis_image['image_attention_qa'] = self.visualize_vqa_result(
                self.batch['image_id'],
                self.mid_result['normal_boxes'], self.mid_result['num_V_ft'],
                self.mid_result['att_score'],
                self.batch['q_intseq'], self.batch['q_intseq_len'],
                self.batch['answer_target'], self.mid_result['pred'],
                max_batch_num=20, line_width=2)
        """

        self.loss = 0
        for key, loss in self.losses.items():
            self.loss = self.loss + loss

        # scalar summary
        for key, val in self.report.items():
            tf.summary.scalar('train/{}'.format(key),
                              val,
                              collections=['heavy_train', 'train'])
            tf.summary.scalar('val/{}'.format(key),
                              val,
                              collections=['heavy_val', 'val'])
            tf.summary.scalar('testval/{}'.format(key),
                              val,
                              collections=['heavy_testval', 'testval'])

        # image summary
        for key, val in self.vis_image.items():
            tf.summary.image('train-{}'.format(key),
                             val,
                             max_outputs=10,
                             collections=['heavy_train'])
            tf.summary.image('val-{}'.format(key),
                             val,
                             max_outputs=10,
                             collections=['heavy_val'])
            tf.summary.image('testval-{}'.format(key),
                             val,
                             max_outputs=10,
                             collections=['heavy_testval'])

        return self.loss
    def build_attribute_attention(self):
        """
        attribute_attention
        """
        num_V_ft = self.batch['num_boxes']
        v_linear_v = self.mid_result['v_linear_v']

        w_embed = tf.nn.embedding_lookup(self.v_word_map,
                                         self.batch['attr_att/word_tokens'])
        w_L_ft = modules.fc_layer(w_embed,
                                  L_DIM,
                                  use_bias=True,
                                  use_bn=False,
                                  use_ln=True,
                                  activation_fn=tf.nn.relu,
                                  is_training=self.is_train,
                                  scope='v_word_fc')

        w_len = self.batch['attr_att/word_tokens_len']
        mask = tf.sequence_mask(  # [bs, #proposal, len]
            w_len,
            maxlen=tf.shape(w_L_ft)[-2],
            dtype=tf.float32)
        pooled_w_L_ft = tf.reduce_sum(w_L_ft * tf.expand_dims(mask, axis=-1),
                                      axis=-2)
        pooled_w_L_ft = pooled_w_L_ft / \
            tf.expand_dims(tf.to_float(w_len), axis=-1)

        l_linear_v = modules.fc_layer(pooled_w_L_ft,
                                      V_DIM,
                                      use_bias=True,
                                      use_bn=False,
                                      use_ln=True,
                                      activation_fn=tf.nn.relu,
                                      is_training=self.is_train,
                                      scope='q_linear_v')

        tile_v_linear_v = tf.tile(tf.expand_dims(v_linear_v, axis=1),
                                  [1, self.data_cfg.n_attr_att, 1, 1])
        flat_tile_v_linear_v = tf.reshape(
            tile_v_linear_v, [-1, self.data_cfg.max_box_num, V_DIM])
        tile_num_V_ft = tf.tile(tf.expand_dims(num_V_ft, axis=1),
                                [1, self.data_cfg.n_attr_att])
        flat_tile_num_V_ft = tf.reshape(tile_num_V_ft, [-1])

        flat_l_linear_v = tf.reshape(l_linear_v, [-1, V_DIM])

        # flat_att_logit: [bs * #attr, num_proposal]
        flat_att_logit = modules.hadamard_attention(flat_tile_v_linear_v,
                                                    flat_tile_num_V_ft,
                                                    flat_l_linear_v,
                                                    use_ln=False,
                                                    is_train=self.is_train,
                                                    normalizer=None)

        n_entry = self.data_cfg.n_attr_att
        n_proposal = self.data_cfg.max_box_num
        logit = tf.reshape(flat_att_logit, [-1, n_entry, n_proposal])

        with tf.name_scope('loss/attr_attend'):
            multilabel_gt = tf.to_float(
                tf.greater(self.batch['attr_att/att_scores'], 0.5))
            num_valid_entry = self.batch['attr_att/num']
            valid_mask = tf.sequence_mask(num_valid_entry,
                                          maxlen=self.data_cfg.n_attr_att,
                                          dtype=tf.float32)
            loss, acc, recall, precision, top_1_prec, top_k_recall = \
                self.binary_classification_loss(logit, multilabel_gt, valid_mask,
                                                depth=self.data_cfg.max_box_num)
            self.losses['attr_att'] = loss
            self.report['attr_att_loss'] = loss
            self.report['attr_att_acc'] = acc
            self.report['attr_att_recall'] = recall
            self.report['attr_att_precision'] = precision
            self.report['attr_att_top_1_prec'] = top_1_prec
            self.report['attr_att_top_{}_recall'.format(TOP_K)] = top_k_recall
Exemple #3
0
    def build_object_V_ft(self):
        V_ft = self.batch['image_ft']  # [bs,  #proposal, #feat_dim]
        V_ft = tf.expand_dims(V_ft, axis=1)  # [bs, 1, #proposal, #feat_dim]
        V_ft = tf.tile(V_ft, [1, self.data_cfg.n_obj_bf, 1, 1
                              ])  # [bs, #obj, #proposal, #feat_dim]
        V_ft = tf.reshape(
            V_ft, [-1, self.data_cfg.max_box_num, self.data_cfg.vfeat_dim
                   ])  # [bs * #obj, #proposal, #feat_dim]
        spat_ft = self.batch['spatial_ft']
        spat_ft = tf.expand_dims(spat_ft, axis=1)
        spat_ft = tf.tile(spat_ft, [1, self.data_cfg.n_obj_bf, 1, 1])
        spat_ft = tf.reshape(spat_ft, [-1, self.data_cfg.max_box_num, 6])
        num_V_ft = self.batch['num_boxes']  # [bs]
        num_V_ft = tf.expand_dims(num_V_ft, axis=1)  # [bs, 1]
        num_V_ft = tf.tile(num_V_ft, [1, self.data_cfg.n_obj_bf])  # [bs, #obj]
        num_V_ft = tf.reshape(num_V_ft, [-1])  # [bs * #obj]

        key_spat_ft = self.batch['obj_blank_fill/normal_boxes']
        key_spat_ft = tf.concat([
            key_spat_ft,
            tf.expand_dims(key_spat_ft[:, :, 2] - key_spat_ft[:, :, 0],
                           axis=-1),
            tf.expand_dims(key_spat_ft[:, :, 3] - key_spat_ft[:, :, 1],
                           axis=-1)
        ],
                                axis=-1)

        v_linear_v = modules.fc_layer(  # [bs * #obj, #proposal, V_DIM]
            spat_ft,
            V_DIM,
            use_bias=True,
            use_bn=False,
            use_ln=True,
            activation_fn=tf.nn.relu,
            is_training=self.is_train,
            scope='spat_v_linear_v')

        q_linear_v = modules.fc_layer(  # [bs, #obj, V_DIM]
            key_spat_ft,
            V_DIM,
            use_bias=True,
            use_bn=False,
            use_ln=True,
            activation_fn=tf.nn.relu,
            is_training=self.is_train,
            scope='spat_q_linear_v')
        flat_q_linear_v = tf.reshape(q_linear_v,
                                     [-1, V_DIM])  # [bs * #obj, V_DIM]

        att_score = modules.hadamard_attention(  # [bs * #obj, len]
            v_linear_v,
            num_V_ft,
            flat_q_linear_v,
            use_ln=False,
            is_train=self.is_train,
            scope='spat_att')
        flat_pooled_V_ft = modules.attention_pooling(
            V_ft, att_score)  # [bs * #obj, vfeat_dim]
        pooled_V_ft = tf.reshape(
            flat_pooled_V_ft,
            [-1, self.data_cfg.n_obj_bf, self.data_cfg.vfeat_dim])

        self.mid_result['object_pooled_V_ft'] = pooled_V_ft
    def build(self):
        """
        build network architecture and loss
        """
        """
        Visual features
        """
        with tf.device('/cpu:0'):

            def load_feature(image_idx):
                selected_features = np.take(self.features, image_idx, axis=0)
                return selected_features

            V_ft = tf.py_func(load_feature,
                              inp=[self.batch['image_idx']],
                              Tout=tf.float32,
                              name='sample_features')
            V_ft.set_shape([None, self.max_box_num, self.vfeat_dim])
            num_V_ft = tf.gather(self.num_boxes,
                                 self.batch['image_idx'],
                                 name='gather_num_V_ft',
                                 axis=0)
            self.mid_result['num_V_ft'] = num_V_ft
            normal_boxes = tf.gather(self.normal_boxes,
                                     self.batch['image_idx'],
                                     name='gather_normal_boxes',
                                     axis=0)
            self.mid_result['normal_boxes'] = normal_boxes

        log.warning('v_linear_v')
        v_linear_v = modules.fc_layer(V_ft,
                                      V_DIM,
                                      use_bias=True,
                                      use_bn=False,
                                      use_ln=True,
                                      activation_fn=tf.nn.relu,
                                      is_training=self.is_train,
                                      scope='v_linear_v')
        """
        Encode question
        """
        q_embed = tf.nn.embedding_lookup(self.glove_map,
                                         self.batch['q_intseq'])
        # [bs, L_DIM]
        q_L_ft = modules.encode_L(q_embed,
                                  self.batch['q_intseq_len'],
                                  L_DIM,
                                  cell_type='GRU')
        self.heavy_output['condition'] = q_L_ft

        # [bs, V_DIM}
        log.warning('q_linear_v')
        q_linear_v = modules.fc_layer(q_L_ft,
                                      V_DIM,
                                      use_bias=True,
                                      use_bn=False,
                                      use_ln=True,
                                      activation_fn=tf.nn.relu,
                                      is_training=self.is_train,
                                      scope='q_linear_v')
        """
        Perform attention
        """
        att_score = modules.hadamard_attention(v_linear_v,
                                               num_V_ft,
                                               q_linear_v,
                                               use_ln=False,
                                               is_train=self.is_train)
        self.output['att_score'] = att_score
        self.mid_result['att_score'] = att_score
        pooled_V_ft = modules.attention_pooling(V_ft, att_score)
        """
        Answer classification
        """
        # perform two layer feature encoding and predict output
        with tf.variable_scope('reasoning') as scope:
            log.warning(scope.name)
            # [bs, L_DIM]
            log.warning('pooled_linear_l')
            pooled_linear_l = modules.fc_layer(pooled_V_ft,
                                               L_DIM,
                                               use_bias=True,
                                               use_bn=False,
                                               use_ln=True,
                                               activation_fn=tf.nn.relu,
                                               is_training=self.is_train,
                                               scope='pooled_linear_l')

            log.warning('q_linear_l')
            q_linear_l = modules.fc_layer(q_L_ft,
                                          L_DIM,
                                          use_bias=True,
                                          use_bn=False,
                                          use_ln=True,
                                          activation_fn=tf.nn.relu,
                                          is_training=self.is_train,
                                          scope='q_linear_l')

            joint = modules.fc_layer(pooled_linear_l * q_linear_l,
                                     2048,
                                     use_bias=True,
                                     use_bn=False,
                                     use_ln=True,
                                     activation_fn=tf.nn.relu,
                                     is_training=self.is_train,
                                     scope='joint_fc')
            joint = tf.nn.dropout(joint, 0.5)

            joint2 = modules.fc_layer(joint,
                                      300,
                                      use_bias=True,
                                      use_bn=False,
                                      use_ln=False,
                                      activation_fn=None,
                                      is_training=self.is_train,
                                      scope='classifier')

            output_glove = modules.LearnGloVe(self.answer_dict,
                                              learnable=False,
                                              oov_mean_initialize=True)
            logit = tf.matmul(joint2, output_glove)

        self.output['logit'] = logit
        """
        Compute loss and accuracy
        """
        with tf.name_scope('loss'):
            answer_target = self.batch['answer_target']
            loss = tf.nn.sigmoid_cross_entropy_with_logits(
                labels=answer_target, logits=logit)
            train_loss = tf.reduce_mean(
                tf.reduce_sum(loss * self.train_answer_mask, axis=-1))
            report_loss = tf.reduce_mean(tf.reduce_sum(loss, axis=-1))

            pred = tf.cast(tf.argmax(logit, axis=-1), dtype=tf.int32)
            one_hot_pred = tf.one_hot(pred,
                                      depth=self.num_answer,
                                      dtype=tf.float32)
            self.output['pred'] = pred
            all_score = tf.reduce_sum(one_hot_pred * answer_target, axis=-1)
            max_train_score = tf.reduce_max(answer_target *
                                            self.train_answer_mask,
                                            axis=-1)
            test_obj_score = tf.reduce_sum(one_hot_pred * answer_target *
                                           self.test_answer_mask *
                                           self.obj_answer_mask,
                                           axis=-1)
            test_obj_max_score = tf.reduce_max(
                answer_target * self.test_answer_mask * self.obj_answer_mask,
                axis=-1)
            test_attr_score = tf.reduce_sum(one_hot_pred * answer_target *
                                            self.test_answer_mask *
                                            self.attr_answer_mask,
                                            axis=-1)
            test_attr_max_score = tf.reduce_max(
                answer_target * self.test_answer_mask * self.attr_answer_mask,
                axis=-1)
            self.output['test_obj_score'] = test_obj_score
            self.output['test_obj_max_score'] = test_obj_max_score
            self.output['test_attr_score'] = test_attr_score
            self.output['test_attr_max_score'] = test_attr_max_score
            self.output['all_score'] = all_score
            self.output['max_train_score'] = max_train_score

            acc = tf.reduce_mean(
                tf.reduce_sum(one_hot_pred * answer_target, axis=-1))
            exist_acc = tf.reduce_mean(
                tf.reduce_sum(one_hot_pred * answer_target *
                              self.answer_exist_mask,
                              axis=-1))
            test_acc = tf.reduce_mean(
                tf.reduce_sum(one_hot_pred * answer_target *
                              self.test_answer_mask,
                              axis=-1))
            test_obj_acc = tf.reduce_mean(test_obj_score)
            test_attr_acc = tf.reduce_mean(test_attr_score)
            train_exist_acc = tf.reduce_mean(
                tf.reduce_sum(one_hot_pred * answer_target *
                              self.answer_exist_mask * self.train_answer_mask,
                              axis=-1))
            max_exist_answer_acc = tf.reduce_mean(
                tf.reduce_max(answer_target * self.answer_exist_mask, axis=-1))
            max_train_exist_acc = tf.reduce_mean(
                tf.reduce_max(answer_target * self.answer_exist_mask *
                              self.train_answer_mask,
                              axis=-1))
            test_obj_max_acc = tf.reduce_mean(test_obj_max_score)
            test_attr_max_acc = tf.reduce_mean(test_attr_max_score)
            test_max_answer_acc = tf.reduce_mean(
                tf.reduce_max(answer_target * self.test_answer_mask, axis=-1))
            test_max_exist_answer_acc = tf.reduce_mean(
                tf.reduce_max(answer_target * self.answer_exist_mask *
                              self.test_answer_mask,
                              axis=-1))
            normal_test_obj_acc = tf.where(tf.equal(test_obj_max_acc,
                                                    0), test_obj_max_acc,
                                           test_obj_acc / test_obj_max_acc)
            normal_test_attr_acc = tf.where(tf.equal(test_attr_max_acc,
                                                     0), test_attr_max_acc,
                                            test_attr_acc / test_attr_max_acc)
            normal_train_exist_acc = tf.where(
                tf.equal(max_train_exist_acc, 0), max_train_exist_acc,
                train_exist_acc / max_train_exist_acc)
            normal_exist_acc = tf.where(tf.equal(max_exist_answer_acc,
                                                 0), max_exist_answer_acc,
                                        exist_acc / max_exist_answer_acc)
            normal_test_acc = tf.where(tf.equal(test_max_answer_acc,
                                                0), test_max_answer_acc,
                                       test_acc / test_max_answer_acc)

            self.mid_result['pred'] = pred

            self.losses['answer'] = train_loss
            self.report['answer_train_loss'] = train_loss
            self.report['answer_report_loss'] = report_loss
            self.report['answer_acc'] = acc
            self.report['exist_acc'] = exist_acc
            self.report['test_acc'] = test_acc
            self.report['normal_test_acc'] = normal_test_acc
            self.report['normal_test_object_acc'] = normal_test_obj_acc
            self.report['normal_test_attribute_acc'] = normal_test_attr_acc
            self.report['normal_exist_acc'] = normal_exist_acc
            self.report['normal_train_exist_acc'] = normal_train_exist_acc
            self.report['max_exist_acc'] = max_exist_answer_acc
            self.report['test_max_acc'] = test_max_answer_acc
            self.report['test_max_exist_acc'] = test_max_exist_answer_acc
        """
        Prepare image summary
        """
        self.loss = self.losses['answer']

        # scalar summary
        for key, val in self.report.items():
            tf.summary.scalar('train/{}'.format(key),
                              val,
                              collections=['heavy_train', 'train'])
            tf.summary.scalar('val/{}'.format(key),
                              val,
                              collections=['heavy_val', 'val'])
            tf.summary.scalar('testval/{}'.format(key),
                              val,
                              collections=['heavy_testval', 'testval'])

        # image summary
        for key, val in self.vis_image.items():
            tf.summary.image('train-{}'.format(key),
                             val,
                             max_outputs=10,
                             collections=['heavy_train'])
            tf.summary.image('val-{}'.format(key),
                             val,
                             max_outputs=10,
                             collections=['heavy_val'])
            tf.summary.image('testval-{}'.format(key),
                             val,
                             max_outputs=10,
                             collections=['heavy_testval'])

        return self.loss