def main():
    prob = problem.Problem(dim=3, prangetup=(-3, 3))
    popu = Population(prob, size=10)

    popu.randominit()
    print(popu.poparr)
    print(popu.avg_fitness())
    print(popu.fitarr)
    print(popu.find_expecarr())
    print("problem starts here")
    newsel = misc.Selection()
    newcros = misc.Crossover()
    newmuta = misc.Mutation()

    for i in newsel.select_parent(popu):

        child1, child2 = newcros.do_crossover(i)

        child1 = newmuta.mutate(
            child1,
            prob.rangetup,
            switch=True,
        )
        child2 = newmuta.mutate(child2, prob.rangetup)
        print(child1, child2)
def main():
	mini=np.inf
	popsize=1100
	prob=problem.Problem(fitness_func=problem.katsuura,dim=10,prangetup=(-100,100))
	popu=population.Population(prob,size=popsize)
	popu.randominit()
	genlim=20000
	print(popu.poparr)
	print("thing starts here")
	newsel=misc.Selection(3)
	newcros=misc.Crossover(rate=0.8)
	#newmuta=misc.Mutation(rate=0.1)
	mrate=0.2
	newterm=misc.Termination(0)
	print(popu.avg_fitness())
	for i in range(genlim):
		lis=[]
		if (i==200):
			print("here it is-----------------------------------------")
		if (i==5000):
			print("here it is 500 ------------------------------------")
			mrate=0.02
			#newmuta=misc.Mutation(rate=0.01)
		
		popu.set_fitarr()
		minic=min(popu.fitarr)

		if mini>minic:
			mini=minic
			mininp=popu.poparr[list(popu.fitarr).index(minic)]


		for tup in newsel.select_parent(popu):
			child1,child2=newcros.do_crossover(tup)
			child1=smallstepchange(child1,fac=3,rate=mrate)
			child2=smallstepchange(child2,fac=3,rate=mrate)
			lis.append(child1)
			lis.append(child2)
		del(popu)
		

		arr=np.array(lis)
		popu=population.Population(prob,poparr=arr,size=popsize)
		popu.set_fitarr()
		if np.all(popu.poparr==popu.poparr[0] ):
			break									#these two conditionals have pen-ultimate IMPORTANCE, as my normalization fails heavily if all are same
		if np.all(popu.fitarr==popu.fitarr[0]):
			break
		print(popu.avg_fitness(),i)
		print(mini,list(mininp))

		if  newterm.terminate(popul=popu,generationnum=i,generationlim=genlim):
			print("breaking bad")
			break
		
	print(popu.poparr)

	print(popu.avg_fitness())
Exemple #3
0
def main():
    popsize = 1100
    prob = problem.Problem(fitness_func=problem.katsuura,
                           dim=5,
                           prangetup=(-100, 100))
    popu = population.Population(prob, size=popsize)
    popu.randominit()
    genlim = 2000
    print(popu.poparr)
    print("thing starts here")
    newsel = misc.Selection(1)
    newcros = misc.Crossover(rate=0.9)
    newmuta = misc.Mutation(rate=0.1)
    newterm = misc.Termination(1)
    print(popu.avg_fitness())

    for i in range(genlim):
        lis = []
        if (i == 200):
            print("here it is-----------------------------------------")
        if (i == 500):
            print("here it is 500 ------------------------------------")
        for tup in newsel.select_parent(popu):
            child1, child2 = newcros.do_crossover(tup)
            child1 = newmuta.mutate(child1,
                                    prob.rangetup,
                                    switch=1,
                                    iteri=i,
                                    switchiter=100,
                                    factup=(100, 1000))
            child2 = newmuta.mutate(child2,
                                    prob.rangetup,
                                    switch=1,
                                    iteri=i,
                                    switchiter=100,
                                    factup=(100, 1000))
            lis.append(child1)
            lis.append(child2)
        del (popu)
        arr = np.array(lis)
        popu = population.Population(prob, poparr=arr, size=popsize)
        popu.set_fitarr()
        if np.all(popu.poparr == popu.poparr[0]):
            break  #these two conditionals have pen-ultimate IMPORTANCE, as my normalization fails heavily if all are same
        if np.all(popu.fitarr == popu.fitarr[0]):
            break
        print(popu.avg_fitness())
        if newterm.terminate(popul=popu, iteri=i, lim=500):
            print("breaking bad")
            break

    print(popu.poparr)

    print(popu.avg_fitness())
Exemple #4
0
def main():
    prob = problem.Problem(prob_func=po.problem1_func,
                           randomvec_func=po.problem1_randomvec_func,
                           constraints=po.constraints,
                           dim=5,
                           prangetup=(-100, 100))

    popu = Population(prob, size=10)

    popu.randominit()

    print("problem starts here")
    newsel = misc.Selection(1)
    newcros = misc.Crossover()
    newmuta = misc.Mutation()
    """par1,par2=popu.poparr[0],popu.poparr[1]
	print(par1,par2)
	for i in range(100):
		child1,child2=newcros.do_crossover((par1,par2))
		child1=newmuta.mutate(child1,prob.constraints,switch=True,iteri=i)
		child2=newmuta.mutate(child2,prob.constraints,iteri=i)
		par1,par2=child1,child2
		print(child1,child2)
	"""
    count = 0
    for i in newsel.select_parent(popu):

        child1, child2 = newcros.do_crossover(i)

        child1 = newmuta.mutate(child1,
                                prob.constraints,
                                switch=True,
                                iteri=count)
        child2 = newmuta.mutate(child2, prob.constraints, iteri=count)
        print(child1, child2)
        count += 1
def main():
    popsize = 1100

    mrate = 0.1
    minavg = np.inf
    prob = problem.Problem(fitness_func=problem.rastrigin,
                           dim=10,
                           prangetup=(-100, 100))
    popu = population.Population(prob, size=popsize)
    popu.randominit()
    genlim = 20000
    print(popu.poparr)
    print("thing starts here")
    newsel = misc.Selection(1)
    newcros = misc.Crossover(rate=0.9)
    newterm = misc.Termination(1)
    prevtoprevavg = 2
    prevavg = 1
    nowavg = 0
    flag = 0
    newmuta = misc.Mutation(rate=mrate)

    print(mrate, "starts")

    print(popu.avg_fitness())
    for i in range(genlim):
        lis = []
        if (i == 200):
            print("here it is-----------------------------------------")
        if (i == 500):
            print("here it is 500 ------------------------------------")
        tup = mutachange(nowavg, prevavg, prevtoprevavg, mrate, step=0.001)
        if tup:
            (newmuta, nowavg, prevavg, prevtoprevavg, mrate) = tup
        kickchange(popu,
                   nowavg,
                   prevavg,
                   prevtoprevavg,
                   kickrate=0.05,
                   step=0.001)  #this changes population array
        for tup in newsel.select_parent(popu):
            child1, child2 = newcros.do_crossover(tup)
            child1 = newmuta.mutate(child1,
                                    prob.rangetup,
                                    switch=1,
                                    iteri=i,
                                    switchiter=100,
                                    factup=(100, 1000))
            child2 = newmuta.mutate(child2,
                                    prob.rangetup,
                                    switch=1,
                                    iteri=i,
                                    switchiter=100,
                                    factup=(100, 1000))
            lis.append(child1)
            lis.append(child2)
        del (popu)
        arr = np.array(lis)
        popu = population.Population(prob, poparr=arr, size=popsize)
        popu.set_fitarr()
        if np.all(popu.poparr == popu.poparr[0]):
            break  #these two conditionals have pen-ultimate IMPORTANCE, as my normalization fails heavily if all are same
        if np.all(popu.fitarr == popu.fitarr[0]):
            break
        print(popu.avg_fitness(), mrate, i)
        if newterm.terminate(popul=popu, iteri=i, lim=500):
            print("breaking bad")
            print("for mrate ", mrate, " last gen avg is", popu.avg_fitness())
            flag = 1
            break
        prevtoprevavg = prevavg
        prevavg = nowavg
        nowavg = popu.avg_fitness()

    print(popu.poparr)

    print(popu.avg_fitness())
Exemple #6
0
def main():
    mini = np.inf
    popsize = 1100
    prob = problem.Problem(prob_func=po.problem1_func,
                           randomvec_func=po.problem1_randomvec_func,
                           constraints=po.constraints,
                           dim=3,
                           prangetup=(-100, 100))

    popu = population.Population(prob, size=popsize)
    popu.randominit()
    genlim = 200
    #print(popu.poparr)
    #print("thing starts here")
    newsel = misc.Selection(1)
    newcros = misc.Crossover(rate=0.8)
    newmuta = misc.Mutation(rate=0.1)
    mrate = 0.2
    newterm = misc.Termination(0)
    #print(popu.avg_fitness())

    for i in range(genlim):
        lis = []
        if (i == 200):
            print("here it is-----------------------------------------")
        if (i == 5000):
            print("here it is 500 ------------------------------------")
            mrate = 0.02
            newmuta = misc.Mutation(rate=0.01)

        #popu.set_fitarr()
        #minic=min(popu.fitarr)

        for j in range(popu.size):
            if popu.poparr[j][0] < 0:
                print("reporting issue -ve")
                exit()
        for tup in newsel.select_parent(popu):

            child1, child2 = newcros.do_crossover(tup)
            if child1[0] < 0:
                print("anarth h here")
            child1 = newmuta.mutate(child1, prob.constraints)
            child2 = newmuta.mutate(child2, prob.constraints)
            for p in range(popu.size):
                if popu.poparr[p][0] < 0:
                    print("reporting issue -ve")
                    exit()
            lis.append(child1)
            lis.append(child2)
        del (popu)
        #print("below here")

        arr = np.array(lis)
        popu = population.Population(prob, poparr=arr, size=popsize)
        #print("below here")
        popu.set_fitarr()
        if np.all(popu.poparr == popu.poparr[0]):
            break  #these two conditionals have pen-ultimate IMPORTANCE, as my normalization fails heavily if all are same
        if np.all(popu.fitarr == popu.fitarr[0]):
            break
        #print(popu.avg_fitness(),i)
        #print(mini,list(mininp))
        print(i, genlim)
        if newterm.terminate(popul=popu, generationnum=i,
                             generationlim=genlim):
            print("breaking bad")
            break

    print(popu.poparr)