Exemple #1
0
def turtle( asset, start_date, end_date, systems, config):
    rollrule = config['rollrule']
    nearby   = config['nearby']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    start_d  = misc.day_shift(start_date, '-'+str(max([ max(sys) for sys in systems]))+'b')
    ddf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, sys in enumerate(systems):
        config['signals'] = sys[:3]
        config['max_loss'] = sys[3]
        config['max_pos'] = sys[4]
        (res, closed_trades, ts) = turtle_sim( ddf, mdf, config)
        output[ix] = res
        print 'saving results for scen = %s' % str(ix)
        all_trades = {}
        for i, tradepos in enumerate(closed_trades):
            all_trades[i] = strat.tradepos2dict(tradepos)
        fname = file_prefix + str(ix) + '_trades.csv'
        trades = pd.DataFrame.from_dict(all_trades).T  
        trades.to_csv(fname)
        fname = file_prefix + str(ix) + '_dailydata.csv'
        ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
def dual_thrust( asset, start_date, end_date, scenarios, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    start_d = misc.day_shift(start_date, '-2b')
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    ddf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'm', need_shift=True)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, s in enumerate(scenarios):
        config['win'] = s[1]
        config['k'] = s[0]
        config['m'] = s[2]
        (res, closed_trades, ts) = dual_thrust_sim( ddf, mdf, config)
        output[ix] = res
        print 'saving results for scen = %s' % str(ix)
        all_trades = {}
        for i, tradepos in enumerate(closed_trades):
            all_trades[i] = strat.tradepos2dict(tradepos)
        fname = file_prefix + str(ix) + '_trades.csv'
        trades = pd.DataFrame.from_dict(all_trades).T  
        trades.to_csv(fname)
        fname = file_prefix + str(ix) + '_dailydata.csv'
        ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
Exemple #3
0
def dual_thrust( asset, start_date, end_date, scenarios, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    start_d = misc.day_shift(start_date, '-4b')
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    ddf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'm', need_shift=True)
    mdf = backtest.cleanup_mindata(mdf, asset)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, s in enumerate(scenarios):
        config['win'] = s[1]
        config['k'] = s[0]
        config['m'] = s[2]
        (res, closed_trades, ts) = dual_thrust_sim( ddf, mdf, config)
        output[ix] = res
        print 'saving results for scen = %s' % str(ix)
        all_trades = {}
        for i, tradepos in enumerate(closed_trades):
            all_trades[i] = strat.tradepos2dict(tradepos)
        fname = file_prefix + str(ix) + '_trades.csv'
        trades = pd.DataFrame.from_dict(all_trades).T  
        trades.to_csv(fname)
        fname = file_prefix + str(ix) + '_dailydata.csv'
        ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
Exemple #4
0
def r_breaker( asset, start_date, end_date, scenarios, freqs, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    start_d = misc.day_shift(start_date, '-1b')
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    ddf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
    mdf = backtest.cleanup_mindata(mdf, asset)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, freq in enumerate(freqs):
        if freq !='1min':
            df = dh.conv_ohlc_freq(mdf, freq)
        else:
            df = mdf
        for iy, k in enumerate(scenarios):
            idx = ix*10+iy
            config['k'] = k
            (res, closed_trades, ts) = r_breaker_sim( ddf, df, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T  
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
def chanbreak( asset, start_date, end_date, freqs, windows, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    ddf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'm', need_shift=True)    
    mdf = backtest.cleanup_mindata(mdf, asset)
    output = {}
    for ix, freq in enumerate(freqs):
        config['freq'] = freq
        for iy, win in enumerate(windows):
            idx = ix*10+iy
            config['win'] = win
            (res, closed_trades, ts) = chanbreak_sim( mdf, ddf, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T  
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
def dual_thrust(asset, start_date, end_date, scenarios, config):
    nearby = config["nearby"]
    rollrule = config["rollrule"]
    start_d = misc.day_shift(start_date, "-4b")
    file_prefix = config["file_prefix"] + "_" + asset + "_"
    ddf = misc.nearby(asset, nearby, start_d, end_date, rollrule, "d", need_shift=True)
    mdf = misc.nearby(asset, nearby, start_d, end_date, rollrule, "m", need_shift=True)
    mdf = backtest.cleanup_mindata(mdf, asset)
    # ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, s in enumerate(scenarios):
        config["win"] = s[1]
        config["k"] = s[0]
        config["m"] = s[2]
        (res, closed_trades, ts) = dual_thrust_sim(ddf, mdf, config)
        output[ix] = res
        print "saving results for scen = %s" % str(ix)
        all_trades = {}
        for i, tradepos in enumerate(closed_trades):
            all_trades[i] = strat.tradepos2dict(tradepos)
        fname = file_prefix + str(ix) + "_trades.csv"
        trades = pd.DataFrame.from_dict(all_trades).T
        trades.to_csv(fname)
        fname = file_prefix + str(ix) + "_dailydata.csv"
        ts.to_csv(fname)
    fname = file_prefix + "stats.csv"
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return
Exemple #7
0
 def load_data(self, idx):
     asset = self.sim_assets[idx]
     for prod in asset:
         mdf = misc.nearby(prod, self.config['nearby'], self.config['start_date'], self.config['end_date'],
                       self.config['rollrule'], 'm', need_shift = self.need_shift, database=self.config.get('database', 'hist_data'))
         mdf = misc.cleanup_mindata(mdf, prod)
         self.min_data[prod] = mdf
def fisher_swing(asset, start_date, end_date, freqs, windows, config):
    nearby = config["nearby"]
    rollrule = config["rollrule"]
    file_prefix = config["file_prefix"] + "_" + asset + "_"
    df = misc.nearby(asset, nearby, start_date, end_date, rollrule, "m", need_shift=True)
    df = backtest.cleanup_mindata(df, asset)
    output = {}
    for ix, freq in enumerate(freqs):
        xdf = dh.conv_ohlc_freq(df, freq)
        for iy, win in enumerate(windows):
            idx = ix * 10 + iy
            config["win"] = win
            config["freq"] = freq
            (res, closed_trades, ts) = fisher_swing_sim(df, xdf, config)
            output[idx] = res
            print "saving results for scen = %s" % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + "_trades.csv"
            trades = pd.DataFrame.from_dict(all_trades).T
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + "_dailydata.csv"
            ts.to_csv(fname)
    fname = file_prefix + "stats.csv"
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return
def fisher_swing(asset, start_date, end_date, freqs, windows, config):
    nearby = config['nearby']
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    df = misc.nearby(asset,
                     nearby,
                     start_date,
                     end_date,
                     rollrule,
                     'm',
                     need_shift=True)
    df = backtest.cleanup_mindata(df, asset)
    output = {}
    for ix, freq in enumerate(freqs):
        xdf = dh.conv_ohlc_freq(df, freq)
        for iy, win in enumerate(windows):
            idx = ix * 10 + iy
            config['win'] = win
            config['freq'] = freq
            (res, closed_trades, ts) = fisher_swing_sim(df, xdf, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return
Exemple #10
0
def get_cont_data(asset,
                  start_date,
                  end_date,
                  freq='1m',
                  nearby=1,
                  rollrule='-10b'):
    if nearby == 0:
        mdf = mysqlaccess.load_min_data_to_df('fut_min',
                                              asset,
                                              start_date,
                                              end_date,
                                              minid_start=300,
                                              minid_end=2114,
                                              database='hist_data')
        mdf['contract'] = asset
    else:
        mdf = misc.nearby(asset,
                          nearby,
                          start_date,
                          end_date,
                          rollrule,
                          'm',
                          need_shift=True,
                          database='hist_data')
    mdf = backtest.cleanup_mindata(mdf, asset)
    xdf = dh.conv_ohlc_freq(mdf,
                            freq,
                            extra_cols=['contract'],
                            bar_func=dh.bar_conv_func2)
    return xdf
Exemple #11
0
 def load_data(self, idx):
     asset = self.sim_assets[idx]
     for prod in asset:
         if prod in self.data_store:
             continue
         ticker = prod
         if '$' not in ticker:
             ticker_sp = [ticker, 'spot']
         else:
             ticker_sp = ticker.split('$')
         ticker = ticker_sp[0]
         postfix = '_daily'
         if self.sim_freq == 'm':
             postfix = '_min'
         dbtable = ticker_sp[-1] + postfix
         if ticker_sp[-1] in ['spot']:
             field_id = 'spotID'
         elif ticker_sp[-1] in ['ccy']:
             field_id = 'instID'
         if len(ticker_sp) > 2:
             nb = int(ticker_sp[1])
             if len(ticker_sp) > 3:
                 rollrule = ticker_sp[2]
             else:
                 rollrule = '-1b'
             df = misc.nearby(ticker,
                              nb,
                              self.config['start_date'],
                              self.config['end_date'],
                              rollrule,
                              self.sim_freq,
                              need_shift=self.need_shift,
                              database=self.config.get(
                                  'dbconfig',
                                  dbaccess.dbconfig)['database'])
         else:
             cnx = dbaccess.connect(
                 **self.config.get('dbconfig', dbaccess.dbconfig))
             if self.sim_freq == 'd':
                 df = dbaccess.load_daily_data_to_df(
                     cnx,
                     dbtable,
                     ticker,
                     self.config['start_date'],
                     self.config['end_date'],
                     index_col='date',
                     field=field_id)
             else:
                 minid_start = 1500
                 minid_end = 2114
                 if ticker in misc.night_session_markets:
                     minid_start = 300
                 df = dbaccess.load_min_data_to_df(
                     cnx, dbtable, ticker, self.config['start_date'],
                     self.config['end_date'], minid_start, minid_end)
             df['contract'] = ticker
         if self.sim_freq == 'm':
             df = misc.cleanup_mindata(df, ticker)
         df.columns = [(prod, col) for col in df.columns]
         self.data_store[prod] = df
Exemple #12
0
def get_data(spotID,
             start,
             end,
             spot_table='spot_daily',
             name=None,
             index_col='date',
             fx_pair=None,
             field='spotID',
             args=None):
    cnx = dbaccess.connect(**dbaccess.dbconfig)
    if args:
        args['start_date'] = start
        args['end_date'] = end
        df = misc.nearby(spotID, **args)
    else:
        df = dbaccess.load_daily_data_to_df(cnx,
                                            spot_table,
                                            spotID,
                                            start,
                                            end,
                                            index_col=None,
                                            field=field)
    if isinstance(df[index_col][0], basestring):
        if len(df[index_col][0]) > 12:
            df[index_col] = df[index_col].apply(
                lambda x: datetime.datetime.strptime(x, "%Y-%m-%d %H:%M:%S"
                                                     ).date())
        else:
            df[index_col] = df[index_col].apply(
                lambda x: datetime.datetime.strptime(x, "%Y-%m-%d").date())
    df = df.set_index(index_col)
    if name:
        col_name = name
    else:
        col_name = spotID
    if field == 'ccy':
        df = df[df.tenor == '0W']
        data_field = 'rate'
    elif field == 'spotID':
        data_field = 'close'
    df = df[[data_field]]
    df.rename(columns={data_field: col_name}, inplace=True)
    if fx_pair:
        fx = dbaccess.load_daily_data_to_df(cnx,
                                            'fx_daily',
                                            fx_pair,
                                            start,
                                            end,
                                            index_col=None,
                                            field='ccy')
        fx = fx[fx['tenor'] == '0W']
        if isinstance(fx[index_col][0], basestring):
            fx[index_col] = fx[index_col].apply(
                lambda x: datetime.datetime.strptime(x, "%Y-%m-%d %H:%M:%S"
                                                     ).date())
            fx = fx.set_index(index_col)
        fx = fx.set_index(index_col)
        df[col_name] = df[col_name] / fx['rate']
    return df
Exemple #13
0
 def load_data(self, idx):
     asset = self.sim_assets[idx]
     for prod in asset:
         df = misc.nearby(prod, self.config['nearby'], self.config['start_date'], self.config['end_date'],
                       self.config['rollrule'], self.sim_freq, need_shift = self.need_shift)
         if self.sim_freq == 'm':
             df = misc.cleanup_mindata(df, prod)
         self.data_store[prod] = df
Exemple #14
0
def get_cont_data(asset, start_date, end_date, freq = '1m', nearby = 1, rollrule = '-10b'):
    cnx = dbaccess.connect(**dbaccess.hist_dbconfig)
    if nearby == 0:
        mdf = dbaccess.load_min_data_to_df(cnx, 'fut_min', asset, start_date, end_date, minid_start = 300, minid_end = 2114, database = 'hist_data')
        mdf['contract'] = asset
    else:
        mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True, database = 'hist_data')
    mdf = misc.cleanup_mindata(mdf, asset)
    xdf = dh.conv_ohlc_freq(mdf, freq, extra_cols = ['contract'], bar_func = dh.bar_conv_func2)
    return xdf
Exemple #15
0
 def load_data(self, idx):
     asset = self.sim_assets[idx]
     for prod in asset:
         df = misc.nearby(prod,
                          self.config['nearby'],
                          self.config['start_date'],
                          self.config['end_date'],
                          self.config['rollrule'],
                          self.sim_freq,
                          need_shift=self.need_shift)
         if self.sim_freq == 'm':
             df = misc.cleanup_mindata(df, prod)
         self.data_store[prod] = df
Exemple #16
0
 def load_data(self, idx):
     asset = self.sim_assets[idx]
     for prod in asset:
         if prod in self.data_store:
             continue
         ticker = prod
         if '$' not in ticker:
             ticker_sp = [ticker, 'spot']
         else:
             ticker_sp = ticker.split('$')
         ticker = ticker_sp[0]
         postfix = '_daily'
         if self.sim_freq == 'm':
             postfix = '_min'
         dbtable = ticker_sp[-1] + postfix
         if ticker_sp[-1] in ['spot']:
             field_id = 'spotID'
         elif ticker_sp[-1] in ['ccy']:
             field_id = 'instID'
         if len(ticker_sp) > 2:
             nb = int(ticker_sp[1])
             if len(ticker_sp) > 3:
                 rollrule = ticker_sp[2]
             else:
                 rollrule = '-1b'
             df = misc.nearby(ticker, nb, self.config['start_date'], self.config['end_date'], rollrule,
                         self.sim_freq, need_shift = self.need_shift,
                         database = self.config.get('dbconfig', dbaccess.dbconfig)['database'])
         else:
             cnx = dbaccess.connect(**self.config.get('dbconfig', dbaccess.dbconfig))
             if self.sim_freq == 'd':
                 df = dbaccess.load_daily_data_to_df(cnx, dbtable, ticker,
                         self.config['start_date'], self.config['end_date'], index_col='date',
                         field = field_id)
             else:
                 minid_start = 1500
                 minid_end = 2114
                 if ticker in misc.night_session_markets:
                     minid_start = 300
                 df = dbaccess.load_min_data_to_df(cnx, dbtable, ticker, self.config['start_date'],
                                                   self.config['end_date'], minid_start, minid_end)
             df['contract'] = ticker
         if self.sim_freq == 'm':
             df = misc.cleanup_mindata(df, ticker)
         df.columns = [(prod, col) for col in df.columns]
         self.data_store[prod] = df
Exemple #17
0
def get_data(spotID, start, end, spot_table = 'spot_daily', name = None, index_col = 'date', fx_pair = None, field = 'spotID', args = None):
    cnx = dbaccess.connect(**dbaccess.dbconfig)
    if args:
        args['start_date'] = start
        args['end_date'] = end
        df = misc.nearby(spotID, **args)
        df = df.reset_index()
    else:
        df = dbaccess.load_daily_data_to_df(cnx, spot_table, spotID, start, end, index_col = None, field = field)
    if isinstance(df[index_col][0], basestring):
        if len(df[index_col][0])> 12:
            df[index_col] = df[index_col].apply(lambda x: datetime.datetime.strptime(x, "%Y-%m-%d %H:%M:%S").date())
        else:
            df[index_col] = df[index_col].apply(lambda x: datetime.datetime.strptime(x, "%Y-%m-%d").date())
    df = df.set_index(index_col)
    if name:
        col_name = name
    else:
        col_name = spotID
    if field == 'ccy':
        df = df[df.tenor=='0W']
        data_field = 'rate'
    elif field == 'spotID':
        data_field = 'close'
    elif field == 'instID':
        data_field = 'close'
    df = df[[data_field]]
    df.rename(columns = {data_field: col_name}, inplace = True)
    if fx_pair:
        fx = fx_pair.split('/')
        direction = misc.get_mkt_fxpair(fx[0], fx[1])
        if direction < 0:
            mkt_pair = '/'.join([fx[1],fx[0]])
        else:
            mkt_pair = fx_pair
        fx = dbaccess.load_daily_data_to_df(cnx, 'fx_daily', mkt_pair, start, end, index_col = None, field = 'ccy')
        fx = fx[fx['tenor']=='0W']
        if isinstance(fx[index_col][0], basestring):
            fx[index_col] = fx[index_col].apply(lambda x: datetime.datetime.strptime(x, "%Y-%m-%d %H:%M:%S").date())
        fx = fx.set_index(index_col)
        if direction >= 0:
            df[col_name] = df[col_name]/fx['rate']
        else:
            df[col_name] = df[col_name]*fx['rate']
    return df
Exemple #18
0
def simlauncher_min(config_file):
    sim_config = {}
    with open(config_file, 'r') as fp:
        sim_config = json.load(fp)
    bktest_split = sim_config['sim_func'].split('.')
    bktest_module = __import__(bktest_split[0])
    run_sim = getattr(bktest_module, bktest_split[1])
    dir_name = config_file.split('.')[0]
    test_folder = get_bktest_folder()
    file_prefix = test_folder + dir_name + os.path.sep
    if not os.path.exists(file_prefix):
        os.makedirs(file_prefix)
    sim_list = sim_config['products']
    config = {}
    start_date = datetime.datetime.strptime(sim_config['start_date'],
                                            '%Y%m%d').date()
    config['start_date'] = start_date
    end_date = datetime.datetime.strptime(sim_config['end_date'],
                                          '%Y%m%d').date()
    config['end_date'] = end_date
    scen_dim = [len(sim_config[s]) for s in sim_config['scen_keys']]
    outcol_list = ['asset', 'scenario'] + sim_config['scen_keys'] \
                + ['sharp_ratio', 'tot_pnl', 'std_pnl', 'num_days', \
                    'max_drawdown', 'max_dd_period', 'profit_dd_ratio', \
                    'all_profit', 'tot_cost', 'win_ratio', 'num_win', 'num_loss', \
                    'profit_per_win', 'profit_per_loss']
    scenarios = [list(s) for s in np.ndindex(tuple(scen_dim))]
    config.update(sim_config['config'])
    config['pos_class'] = eval(sim_config['pos_class'])
    if 'proc_func' in sim_config:
        config['proc_func'] = eval(sim_config['proc_func'])
    file_prefix = file_prefix + sim_config['sim_name']
    if config['close_daily']:
        file_prefix = file_prefix + 'daily_'
    config['file_prefix'] = file_prefix
    summary_df = pd.DataFrame()
    fname = config['file_prefix'] + 'summary.csv'
    if os.path.isfile(fname):
        summary_df = pd.DataFrame.from_csv(fname)
    for asset in sim_list:
        file_prefix = config['file_prefix'] + '_' + asset + '_'
        fname = file_prefix + 'stats.json'
        output = {}
        if os.path.isfile(fname):
            with open(fname, 'r') as fp:
                output = json.load(fp)
        if len(output.keys()) < len(scenarios):
            if asset in sim_start_dict:
                start_date = max(sim_start_dict[asset], config['start_date'])
            else:
                start_date = config['start_date']
            if 'offset' in sim_config:
                config[
                    'offset'] = sim_config['offset'] * trade_offset_dict[asset]
            else:
                config['offset'] = trade_offset_dict[asset]
            config['marginrate'] = (sim_margin_dict[asset],
                                    sim_margin_dict[asset])
            config['nearby'] = 1
            config['rollrule'] = '-50b'
            config['exit_min'] = 2112
            config['no_trade_set'] = range(300, 301) + range(
                1500, 1501) + range(2059, 2100)
            if asset in ['cu', 'al', 'zn']:
                config['nearby'] = 3
                config['rollrule'] = '-1b'
            elif asset in ['IF', 'IH', 'IC']:
                config['rollrule'] = '-2b'
                config['no_trade_set'] = range(1515, 1520) + range(2110, 2115)
            elif asset in ['au', 'ag']:
                config['rollrule'] = '-25b'
            elif asset in ['TF', 'T']:
                config['rollrule'] = '-20b'
                config['no_trade_set'] = range(1515, 1520) + range(2110, 2115)
            config['no_trade_set'] = []
            nearby = config['nearby']
            rollrule = config['rollrule']
            if nearby > 0:
                mdf = misc.nearby(asset,
                                  nearby,
                                  start_date,
                                  end_date,
                                  rollrule,
                                  'm',
                                  need_shift=True,
                                  database='hist_data')
            mdf = cleanup_mindata(mdf, asset)
            if 'need_daily' in sim_config:
                ddf = misc.nearby(asset,
                                  nearby,
                                  start_date,
                                  end_date,
                                  rollrule,
                                  'd',
                                  need_shift=True,
                                  database='hist_data')
                config['ddf'] = ddf
            for ix, s in enumerate(scenarios):
                fname1 = file_prefix + str(ix) + '_trades.csv'
                fname2 = file_prefix + str(ix) + '_dailydata.csv'
                if os.path.isfile(fname1) and os.path.isfile(fname2):
                    continue
                for key, seq in zip(sim_config['scen_keys'], s):
                    config[key] = sim_config[key][seq]
                df = mdf.copy(deep=True)
                (res, closed_trades, ts) = run_sim(df, config)
                res.update(dict(zip(sim_config['scen_keys'], s)))
                res['asset'] = asset
                output[ix] = res
                print 'saving results for asset = %s, scen = %s' % (asset,
                                                                    str(ix))
                all_trades = {}
                for i, tradepos in enumerate(closed_trades):
                    all_trades[i] = strat.tradepos2dict(tradepos)
                trades = pd.DataFrame.from_dict(all_trades).T
                trades.to_csv(fname1)
                ts.to_csv(fname2)
                fname = file_prefix + 'stats.json'
                try:
                    with open(fname, 'w') as ofile:
                        json.dump(output, ofile)
                except:
                    continue
        res = pd.DataFrame.from_dict(output, orient='index')
        res.index.name = 'scenario'
        res = res.sort(columns=['sharp_ratio'], ascending=False)
        res = res.reset_index()
        res.set_index(['asset', 'scenario'])
        out_res = res[outcol_list]
        if len(summary_df) == 0:
            summary_df = out_res[:10].copy(deep=True)
        else:
            summary_df = summary_df.append(out_res[:10])
        fname = config['file_prefix'] + 'summary.csv'
        summary_df.to_csv(fname)
    return
Exemple #19
0
def simlauncher_min(config_file):
    sim_config = {}
    with open(config_file, 'r') as fp:
        sim_config = json.load(fp)
    bktest_split = sim_config['sim_func'].split('.')
    bktest_module = __import__(bktest_split[0])
    run_sim = getattr(bktest_module, bktest_split[1])
    dir_name = config_file.split('.')[0]
    test_folder = get_bktest_folder()
    file_prefix = test_folder + dir_name + os.path.sep
    if not os.path.exists(file_prefix):
        os.makedirs(file_prefix)
    sim_list = sim_config['products']
    config = {}
    start_date = datetime.datetime.strptime(sim_config['start_date'], '%Y%m%d').date()
    config['start_date'] = start_date
    end_date   = datetime.datetime.strptime(sim_config['end_date'], '%Y%m%d').date()
    config['end_date'] = end_date
    scen_dim = [ len(sim_config[s]) for s in sim_config['scen_keys']]
    outcol_list = ['asset', 'scenario'] + sim_config['scen_keys'] \
                + ['sharp_ratio', 'tot_pnl', 'std_pnl', 'num_days', \
                    'max_drawdown', 'max_dd_period', 'profit_dd_ratio', \
                    'all_profit', 'tot_cost', 'win_ratio', 'num_win', 'num_loss', \
                    'profit_per_win', 'profit_per_loss']
    scenarios = [list(s) for s in np.ndindex(tuple(scen_dim))]
    config.update(sim_config['config'])
    config['pos_class'] = eval(sim_config['pos_class'])
    if 'proc_func' in sim_config:
        config['proc_func'] = eval(sim_config['proc_func'])
    file_prefix = file_prefix + sim_config['sim_name']
    if config['close_daily']:
        file_prefix = file_prefix + 'daily_'
    config['file_prefix'] = file_prefix
    summary_df = pd.DataFrame()
    fname = config['file_prefix'] + 'summary.csv'
    if os.path.isfile(fname):
        summary_df = pd.DataFrame.from_csv(fname)
    for asset in sim_list:
        file_prefix = config['file_prefix'] + '_' + asset + '_'
        fname = file_prefix + 'stats.json'
        output = {}
        if os.path.isfile(fname):
            with open(fname, 'r') as fp:
                output = json.load(fp)
        if len(output.keys()) < len(scenarios):
            if asset in sim_start_dict:
                start_date =  max(sim_start_dict[asset], config['start_date'])
            else:
                start_date = config['start_date']
            if 'offset' in sim_config:
                config['offset'] = sim_config['offset'] * trade_offset_dict[asset]
            else:
                config['offset'] = trade_offset_dict[asset]
            config['marginrate'] = ( sim_margin_dict[asset], sim_margin_dict[asset])
            config['nearby'] = 1
            config['rollrule'] = '-50b'
            config['exit_min'] = 2112
            config['no_trade_set'] = range(300, 301) + range(1500, 1501) + range(2059, 2100)
            if asset in ['cu', 'al', 'zn']:
                config['nearby'] = 3
                config['rollrule'] = '-1b'
            elif asset in ['IF', 'IH', 'IC']:
                config['rollrule'] = '-2b'
                config['no_trade_set'] = range(1515, 1520) + range(2110, 2115)
            elif asset in ['au', 'ag']:
                config['rollrule'] = '-25b'
            elif asset in ['TF', 'T']:
                config['rollrule'] = '-20b'
                config['no_trade_set'] = range(1515, 1520) + range(2110, 2115)
            config['no_trade_set'] = []
            nearby   = config['nearby']
            rollrule = config['rollrule']
            if nearby > 0:
                mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
            mdf = cleanup_mindata(mdf, asset)
            if 'need_daily' in sim_config:
                ddf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'd', need_shift=True)
                config['ddf'] = ddf
            for ix, s in enumerate(scenarios):
                fname1 = file_prefix + str(ix) + '_trades.csv'
                fname2 = file_prefix + str(ix) + '_dailydata.csv'
                if os.path.isfile(fname1) and os.path.isfile(fname2):
                    continue
                for key, seq in zip(sim_config['scen_keys'], s):
                    config[key] = sim_config[key][seq]
                df = mdf.copy(deep = True)
                (res, closed_trades, ts) = run_sim( df, config)
                res.update(dict(zip(sim_config['scen_keys'], s)))
                res['asset'] = asset
                output[ix] = res
                print 'saving results for asset = %s, scen = %s' % (asset, str(ix))
                all_trades = {}
                for i, tradepos in enumerate(closed_trades):
                    all_trades[i] = strat.tradepos2dict(tradepos)
                trades = pd.DataFrame.from_dict(all_trades).T
                trades.to_csv(fname1)
                ts.to_csv(fname2)
                fname = file_prefix + 'stats.json'
                try:
                    with open(fname, 'w') as ofile:
                        json.dump(output, ofile)
                except:
                    continue
        res = pd.DataFrame.from_dict(output, orient = 'index')
        res.index.name = 'scenario'
        res = res.sort(columns = ['sharp_ratio'], ascending=False)
        res = res.reset_index()
        res.set_index(['asset', 'scenario'])
        out_res = res[outcol_list]
        if len(summary_df) == 0:
            summary_df = out_res[:10].copy(deep = True)
        else:
            summary_df = summary_df.append(out_res[:10])
        fname = config['file_prefix'] + 'summary.csv'
        summary_df.to_csv(fname)
    return
def aberration( asset, start_date, end_date, freqs, windows, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
	df = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)