test_norm = test.astype('float32') # normalize to range 0-1 train_norm = train_norm / 255.0 test_norm = test_norm / 255.0 # return normalized images return train_norm, test_norm # prepare pixel data trainX, testX = prep_pixels(trainX, testX) hp = HP() hp.save_path = 'saved_runs' hp.description = "syclop micro feature learning runs" hp.this_run_name = 'micro_{}'.format(run_index) deploy_logs() #%% ############################### Get Trained Teacher ##########################3 path = '/home/orram/Documents/GitHub/imagewalker/teacher_student/' path = '/home/labs/ahissarlab/orra/imagewalker/teacher_student/' def train_model(path, trainX, trainY): def net(): input = keras.layers.Input(shape=(32, 32, 3)) #Define CNN x = keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same',
action='store_false') parser.set_defaults(eval_mode=False, decode_from_dvs=False, test_mode=False, rising_beta_schedule=True, decoder_ignore_position=False, curriculum_enable=True, conv_fe=False, acceleration_mode=False) config = parser.parse_args() config = vars(config) hp.upadte_from_dict(config) hp.this_run_name = sys.argv[ 0] + '_noname_' + hp.run_name_suffix + '_' + lsbjob + '_' + str( int(time.time())) #define model n_timesteps = hp.steps_per_episode ## deploy_logs() ## if hp.decoder_arch == 'multicore_201': decoder = rnn_model_multicore_201( n_cores=hp.decoder_n_cores, lr=hp.decoder_learning_rate, ignore_input_B=hp.decoder_ignore_position, dropout=hp.decoder_dropout, rnn_type=hp.decoder_rnn_type,