def _internal_eval(model, global_step, sess, iterator, iterator_feed_dict, summary_writer, label): """Computing perplexity.""" sess.run(iterator.initializer, feed_dict=iterator_feed_dict) ppl = model_helper.compute_perplexity(model, sess, label) utils.add_summary(summary_writer, global_step, "%s_ppl" % label, ppl) return ppl
def _internal_eval(model, global_step, sess, iterator, iterator_feed_dict, summary_writer, label): """Used to compute perplexity on the dataset provided through the iterator""" # Initialize the iterator using the feed dict sess.run(iterator.initializer, feed_dict=iterator_feed_dict) # Compute the perplexity ppl = model_helper.compute_perplexity(model, sess, name=label) # Add summary for the ppl to the summary writer utils.add_summary(summary_writer, global_step, tag="%s_ppl" % label, value=ppl) return ppl
def _external_eval(model, global_step, sess, hparams, iterator, iterator_feed_dict, tgt_file, label, summary_writer, save_on_best_dev): """External evaluation such as BLEU and ROUGE scores. If save on best then keep the best scores in the hparams""" out_dir = hparams.out_dir # Avoids running eval when global step is 0 decode = global_step > 0 if decode: utils.print_out("# External evaluation, global step %d" % global_step) # Initialize the iterator sess.run(iterator.initializer, feed_dict=iterator_feed_dict) # Create the output file for the logs output_file = os.path.join(out_dir, "output_%s" % label) # Get the scores for the metrics scores = chatbot_utils.decode_and_evaluate( name=label, model=model, sess=sess, output_file=output_file, reference_file=tgt_file, metrics=hparams.metrics, bpe_delimiter=hparams.bpe_delimiter, beam_width=hparams.beam_width, eos=hparams.eos, number_token=hparams.number_token, name_token=hparams.name_token, decode=decode ) # Create the summaries and also save the best if decode: for metric in hparams.metrics: # Create the summary utils.add_summary(summary_writer, global_step, "%s_%s" % (label, metric), scores[metric]) # Is the current metric score better than the last if save_on_best_dev and scores[metric] > getattr(hparams, "best_" + metric): # Update the hparams score setattr(hparams, "best_" + metric, scores[metric]) # Save the model which got the best for this metric to file model.saver.save(sess, os.path.join(getattr(hparams, "best_" + metric + "_dir"), "dialogue.ckpt"), global_step=model.global_step) # For safety # Save the hparams to file utils.save_hparams(out_dir, hparams, verbose=True) return scores
def _external_eval(model, global_step, sess, hparams, iterator, iterator_feed_dict, tgt_file, label, summary_writer, save_on_best): """External evaluation such as BLEU and ROUGE scores.""" out_dir = hparams.out_dir decode = global_step > 0 if decode: utils.print_out("# External evaluation, global step %d" % global_step) sess.run(iterator.initializer, feed_dict=iterator_feed_dict) output = os.path.join(out_dir, "output_%s" % label) scores = nmt_utils.decode_and_evaluate(label, model, sess, output, ref_file=tgt_file, metrics=hparams.metrics, bpe_delimiter=hparams.bpe_delimiter, beam_width=hparams.beam_width, tgt_sos=hparams.sos, tgt_eos=hparams.eos, decode=decode) # Save on best metrics if decode: for metric in hparams.metrics: utils.add_summary(summary_writer, global_step, "%s_%s" % (label, metric), scores[metric]) # metric: larger is better if save_on_best and scores[metric] > getattr( hparams, "best_" + metric): setattr(hparams, "best_" + metric, scores[metric]) model.saver.save(sess, os.path.join( getattr(hparams, "best_" + metric + "_dir"), "translate.ckpt"), global_step=model.global_step) utils.save_hparams(out_dir, hparams) return scores
def train(hparams, scope=None, target_session=''): """Train the chatbot""" # Initialize some local hyperparameters log_device_placement = hparams.log_device_placement out_dir = hparams.out_dir num_train_steps = hparams.num_train_steps steps_per_stats = hparams.steps_per_stats steps_per_external_eval = hparams.steps_per_external_eval steps_per_eval = 10 * steps_per_stats if not steps_per_external_eval: steps_per_external_eval = 5 * steps_per_eval if hparams.architecture == "simple": model_creator = SimpleModel get_infer_iterator = iterator_utils.get_infer_iterator get_iterator = iterator_utils.get_iterator elif hparams.architecture == "hier": model_creator = HierarchicalModel # Parse some of the arguments now def curry_get_infer_iterator(dataset, vocab_table, batch_size, src_reverse, eos, src_max_len): return end2end_iterator_utils.get_infer_iterator(dataset, vocab_table, batch_size, src_reverse, eos, src_max_len=src_max_len, eou=hparams.eou, dialogue_max_len=hparams.dialogue_max_len) get_infer_iterator = curry_get_infer_iterator def curry_get_iterator(src_dataset, tgt_dataset, vocab_table, batch_size, sos, eos, src_reverse, random_seed, num_buckets, src_max_len=None, tgt_max_len=None, num_threads=4, output_buffer_size=None, skip_count=None): return end2end_iterator_utils.get_iterator(src_dataset, tgt_dataset, vocab_table, batch_size, sos, eos, eou=hparams.eou, src_reverse=src_reverse, random_seed=random_seed, num_dialogue_buckets=num_buckets, src_max_len=src_max_len, tgt_max_len=tgt_max_len, num_threads=num_threads, output_buffer_size=output_buffer_size, skip_count=skip_count) get_iterator = curry_get_iterator else: raise ValueError("Unkown architecture", hparams.architecture) # Create three models which share parameters through the use of checkpoints train_model = create_train_model(model_creator, get_iterator, hparams, scope) eval_model = create_eval_model(model_creator, get_iterator, hparams, scope) infer_model = inference.create_infer_model(model_creator, get_infer_iterator, hparams, scope) # ToDo: adapt for architectures # Preload the data to use for sample decoding dev_src_file = "%s.%s" % (hparams.dev_prefix, hparams.src) dev_tgt_file = "%s.%s" % (hparams.dev_prefix, hparams.tgt) sample_src_data = inference.load_data(dev_src_file) sample_tgt_data = inference.load_data(dev_tgt_file) summary_name = "train_log" model_dir = hparams.out_dir # Log and output files log_file = os.path.join(out_dir, "log_%d" % time.time()) log_f = tf.gfile.GFile(log_file, mode="a") utils.print_out("# log_file=%s" % log_file, log_f) avg_step_time = 0.0 # Create the configurations for the sessions config_proto = utils.get_config_proto(log_device_placement=log_device_placement) # Create three sessions, one for each model train_sess = tf.Session(target=target_session, config=config_proto, graph=train_model.graph) eval_sess = tf.Session(target=target_session, config=config_proto, graph=eval_model.graph) infer_sess = tf.Session(target=target_session, config=config_proto, graph=infer_model.graph) # Load the train model from checkpoint or create a new one with train_model.graph.as_default(): loaded_train_model, global_step = model_helper.create_or_load_model(train_model.model, model_dir, train_sess, name="train") # Summary writer summary_writer = tf.summary.FileWriter( os.path.join(out_dir, summary_name), train_model.graph) # First evaluation run_full_eval( model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) last_stats_step = global_step last_eval_step = global_step last_external_eval_step = global_step # This is the training loop. # Initialize the hyperparameters for the loop. step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0 checkpoint_total_count = 0.0 speed, train_ppl = 0.0, 0.0 start_train_time = time.time() utils.print_out( "# Start step %d, lr %g, %s" % (global_step, loaded_train_model.learning_rate.eval(session=train_sess), time.ctime()), log_f) # epoch_step records where we were within an epoch. Used to skip trained on examples skip_count = hparams.batch_size * hparams.epoch_step utils.print_out("# Init train iterator, skipping %d elements" % skip_count) # Initialize the training iterator train_sess.run( train_model.iterator.initializer, feed_dict={train_model.skip_count_placeholder: skip_count}) # Train until we reach num_steps. while global_step < num_train_steps: # Run a step start_step_time = time.time() try: step_result = loaded_train_model.train(train_sess) (_, step_loss, step_predict_count, step_summary, global_step, # The _ is the output of the update op step_word_count, batch_size) = step_result hparams.epoch_step += 1 except tf.errors.OutOfRangeError: # Finished going through the training dataset. Go to next epoch. hparams.epoch_step = 0 utils.print_out( "# Finished an epoch, step %d. Perform external evaluation" % global_step) # Decode and print a random sentence run_sample_decode(infer_model, infer_sess, model_dir, hparams, summary_writer, sample_src_data, sample_tgt_data) # Perform external evaluation to save checkpoints if this is the best for some metric dev_scores, test_scores, _ = run_external_evaluation(infer_model, infer_sess, model_dir, hparams, summary_writer, save_on_best_dev=True) # Reinitialize the iterator from the beginning train_sess.run(train_model.iterator.initializer, feed_dict={train_model.skip_count_placeholder: 0}) continue # Write step summary. summary_writer.add_summary(step_summary, global_step) # update statistics step_time += (time.time() - start_step_time) checkpoint_loss += (step_loss * batch_size) checkpoint_predict_count += step_predict_count checkpoint_total_count += float(step_word_count) # Once in a while, we print statistics. if global_step - last_stats_step >= steps_per_stats: last_stats_step = global_step # Print statistics for the previous epoch. avg_step_time = step_time / steps_per_stats train_ppl = utils.safe_exp(checkpoint_loss / checkpoint_predict_count) speed = checkpoint_total_count / (1000 * step_time) utils.print_out( " global step %d lr %g " "step-time %.2fs wps %.2fK ppl %.2f %s" % (global_step, loaded_train_model.learning_rate.eval(session=train_sess), avg_step_time, speed, train_ppl, _get_best_results(hparams)), log_f) if math.isnan(train_ppl): # The model has screwed up break # Reset timer and loss. step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0 checkpoint_total_count = 0.0 if global_step - last_eval_step >= steps_per_eval: # Perform evaluation. Start by reassigning the last_eval_step variable to the current step last_eval_step = global_step # Print the progress and add summary utils.print_out("# Save eval, global step %d" % global_step) utils.add_summary(summary_writer, global_step, "train_ppl", train_ppl) # Save checkpoint loaded_train_model.saver.save(train_sess, os.path.join(out_dir, "chatbot.ckpt"), global_step=global_step) # Decode and print a random sample run_sample_decode(infer_model, infer_sess, model_dir, hparams, summary_writer, sample_src_data, sample_tgt_data) # Run internal evaluation, and update the ppl variables. The data iterator is instantieted in the method. dev_ppl, test_ppl = run_internal_eval(eval_model, eval_sess, model_dir, hparams, summary_writer) if global_step - last_external_eval_step >= steps_per_external_eval: # Run the external evaluation last_external_eval_step = global_step # Save checkpoint loaded_train_model.saver.save(train_sess, os.path.join(out_dir, "chatbot.ckpt"), global_step=global_step) # Decode and print a random sample run_sample_decode(infer_model, infer_sess, model_dir, hparams, summary_writer, sample_src_data, sample_tgt_data) # Run external evaluation, updating metric scores in the meanwhile. The unneeded output is the global step. dev_scores, test_scores, _ = run_external_evaluation(infer_model, infer_sess, model_dir, hparams, summary_writer, save_on_best_dev=True) # Done training. Save the model loaded_train_model.saver.save( train_sess, os.path.join(out_dir, "chatbot.ckpt"), global_step=global_step) result_summary, _, dev_scores, test_scores, dev_ppl, test_ppl = run_full_eval( model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) utils.print_out( "# Final, step %d lr %g " "step-time %.2f wps %.2fK ppl %.2f, %s, %s" % (global_step, loaded_train_model.learning_rate.eval(session=train_sess), avg_step_time, speed, train_ppl, result_summary, time.ctime()), log_f) utils.print_time("# Done training!", start_train_time) utils.print_out("# Start evaluating saved best models.") for metric in hparams.metrics: best_model_dir = getattr(hparams, "best_" + metric + "_dir") result_summary, best_global_step, _, _, _, _ = run_full_eval( best_model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) utils.print_out("# Best %s, step %d " "step-time %.2f wps %.2fK, %s, %s" % (metric, best_global_step, avg_step_time, speed, result_summary, time.ctime()), log_f) summary_writer.close() return (dev_scores, test_scores, dev_ppl, test_ppl, global_step)
def train(hparams, scope=None, target_session=""): """Train a translation model.""" log_device_placement = hparams.log_device_placement out_dir = hparams.out_dir num_train_steps = hparams.num_train_steps steps_per_stats = hparams.steps_per_stats steps_per_external_eval = hparams.steps_per_external_eval steps_per_eval = 10 * steps_per_stats if not steps_per_external_eval: steps_per_external_eval = 5 * steps_per_eval if not hparams.attention: model_creator = nmt_model.Model elif hparams.attention_architecture == "standard": model_creator = attention_model.AttentionModel elif hparams.attention_architecture in ["gnmt", "gnmt_v2"]: model_creator = gnmt_model.GNMTModel else: raise ValueError("Unknown model architecture") train_model = model_helper.create_train_model(model_creator, hparams, scope) eval_model = model_helper.create_eval_model(model_creator, hparams, scope) infer_model = model_helper.create_infer_model(model_creator, hparams, scope) # Preload data for sample decoding. dev_src_file = "%s.%s" % (hparams.dev_prefix, hparams.src) dev_tgt_file = "%s.%s" % (hparams.dev_prefix, hparams.tgt) sample_src_data = inference.load_data(dev_src_file) sample_tgt_data = inference.load_data(dev_tgt_file) summary_name = "train_log" model_dir = hparams.out_dir # Log and output files log_file = os.path.join(out_dir, "log_%d" % time.time()) log_f = tf.gfile.GFile(log_file, mode="w") utils.print_out("# log_file=%s" % log_file, log_f) avg_step_time = 0.0 # TensorFlow model config_proto = utils.get_config_proto( log_device_placement=log_device_placement) train_sess = tf.Session(target=target_session, config=config_proto, graph=train_model.graph) eval_sess = tf.Session(target=target_session, config=config_proto, graph=eval_model.graph) infer_sess = tf.Session(target=target_session, config=config_proto, graph=infer_model.graph) with train_model.graph.as_default(): loaded_train_model, global_step = model_helper.create_or_load_model( train_model.model, model_dir, train_sess, "train") # Summary writer summary_writer = tf.summary.FileWriter(os.path.join(out_dir, summary_name), train_model.graph) # First evaluation run_full_eval(model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) last_stats_step = global_step last_eval_step = global_step last_external_eval_step = global_step # This is the training loop. step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0 checkpoint_total_count = 0.0 speed, train_ppl = 0.0, 0.0 start_train_time = time.time() utils.print_out( "# Start step %d, lr %g, %s" % (global_step, loaded_train_model.learning_rate.eval( session=train_sess), time.ctime()), log_f) # Initialize all of the iterators skip_count = hparams.batch_size * hparams.epoch_step utils.print_out("# Init train iterator, skipping %d elements" % skip_count) if hparams.curriculum == 'none': train_sess.run( train_model.iterator.initializer, feed_dict={train_model.skip_count_placeholder: skip_count}) else: if hparams.curriculum == 'predictive_gain': exp3s = Exp3S(hparams.num_curriculum_buckets, 0.001, 0, 0.05) elif hparams.curriculum == 'look_back_and_forward': curriculum_point = 0 handle = train_model.iterator.handle for i in range(hparams.num_curriculum_buckets): train_sess.run( train_model.iterator.initializer[i].initializer, feed_dict={train_model.skip_count_placeholder: skip_count}) iterator_handles = [ train_sess.run( train_model.iterator.initializer[i].string_handle(), feed_dict={train_model.skip_count_placeholder: skip_count}) for i in range(hparams.num_curriculum_buckets) ] utils.print_out("Starting training") while global_step < num_train_steps: ### Run a step ### start_time = time.time() try: if hparams.curriculum != 'none': if hparams.curriculum == 'predictive_gain': lesson = exp3s.draw_task() elif hparams.curriculum == 'look_back_and_forward': if curriculum_point == hparams.num_curriculum_buckets: lesson = np.random.randint( low=0, high=hparams.num_curriculum_buckets) else: lesson = curriculum_point if np.random.random_sample( ) < 0.8 else np.random.randint( low=0, high=hparams.num_curriculum_buckets) step_result = loaded_train_model.train( hparams, train_sess, handle=handle, iterator_handle=iterator_handles[lesson], use_fed_source_placeholder=loaded_train_model. use_fed_source, fed_source_placeholder=loaded_train_model.fed_source) (_, step_loss, step_predict_count, step_summary, global_step, step_word_count, batch_size, source) = step_result if hparams.curriculum == 'predictive_gain': new_loss = train_sess.run( [loaded_train_model.train_loss], feed_dict={ handle: iterator_handles[lesson], loaded_train_model.use_fed_source: True, loaded_train_model.fed_source: source }) # new_loss = loaded_train_model.train_loss.eval( # session=train_sess, # feed_dict={ # handle: iterator_handles[lesson], # loaded_train_model.use_fed_source: True, # loaded_train_model.fed_source: source # }) # utils.print_out("lesson: %s, step loss: %s, new_loss: %s" % (lesson, step_loss, new_loss)) # utils.print_out("exp3s dist: %s" % (exp3s.pi, )) curriculum_point_a = lesson * ( hparams.src_max_len // hparams.num_curriculum_buckets) + 1 curriculum_point_b = ( lesson + 1) * (hparams.src_max_len // hparams.num_curriculum_buckets) + 1 v = step_loss - new_loss exp3s.update_w( v, float(curriculum_point_a + curriculum_point_b) / 2.0) elif hparams.curriculum == 'look_back_and_forward': utils.print_out("step loss: %s, lesson: %s" % (step_loss, lesson)) curriculum_point_a = curriculum_point * ( hparams.src_max_len // hparams.num_curriculum_buckets) + 1 curriculum_point_b = (curriculum_point + 1) * ( hparams.src_max_len // hparams.num_curriculum_buckets) + 1 if step_loss < (hparams.curriculum_progress_loss * (float(curriculum_point_a + curriculum_point_b) / 2.0)): curriculum_point += 1 else: step_result = loaded_train_model.train(hparams, train_sess) (_, step_loss, step_predict_count, step_summary, global_step, step_word_count, batch_size) = step_result hparams.epoch_step += 1 except tf.errors.OutOfRangeError: # Finished going through the training dataset. Go to next epoch. hparams.epoch_step = 0 # utils.print_out( # "# Finished an epoch, step %d. Perform external evaluation" % # global_step) # run_sample_decode(infer_model, infer_sess, # model_dir, hparams, summary_writer, sample_src_data, # sample_tgt_data) # dev_scores, test_scores, _ = run_external_eval( # infer_model, infer_sess, model_dir, # hparams, summary_writer) if hparams.curriculum == 'none': train_sess.run( train_model.iterator.initializer, feed_dict={train_model.skip_count_placeholder: 0}) else: train_sess.run( train_model.iterator.initializer[lesson].initializer, feed_dict={train_model.skip_count_placeholder: 0}) continue # Write step summary. summary_writer.add_summary(step_summary, global_step) # update statistics step_time += (time.time() - start_time) checkpoint_loss += (step_loss * batch_size) checkpoint_predict_count += step_predict_count checkpoint_total_count += float(step_word_count) # Once in a while, we print statistics. if global_step - last_stats_step >= steps_per_stats: if hparams.curriculum == 'predictive_gain': utils.print_out("lesson: %s, step loss: %s, new_loss: %s" % (lesson, step_loss, new_loss)) utils.print_out("exp3s dist: %s" % (exp3s.pi, )) last_stats_step = global_step # Print statistics for the previous epoch. avg_step_time = step_time / steps_per_stats train_ppl = utils.safe_exp(checkpoint_loss / checkpoint_predict_count) speed = checkpoint_total_count / (1000 * step_time) utils.print_out( " global step %d lr %g " "step-time %.2fs wps %.2fK ppl %.2f %s" % (global_step, loaded_train_model.learning_rate.eval(session=train_sess), avg_step_time, speed, train_ppl, _get_best_results(hparams)), log_f) if math.isnan(train_ppl): break # Reset timer and loss. step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0 checkpoint_total_count = 0.0 if global_step - last_eval_step >= steps_per_eval: last_eval_step = global_step utils.print_out("# Save eval, global step %d" % global_step) utils.add_summary(summary_writer, global_step, "train_ppl", train_ppl) # Save checkpoint loaded_train_model.saver.save(train_sess, os.path.join(out_dir, "translate.ckpt"), global_step=global_step) # Evaluate on dev/test run_sample_decode(infer_model, infer_sess, model_dir, hparams, summary_writer, sample_src_data, sample_tgt_data) dev_ppl, test_ppl = run_internal_eval(eval_model, eval_sess, model_dir, hparams, summary_writer) dev_scores, test_scores, _ = run_external_eval( infer_model, infer_sess, model_dir, hparams, summary_writer) # if global_step - last_external_eval_step >= steps_per_external_eval: # last_external_eval_step = global_step # # Save checkpoint # loaded_train_model.saver.save( # train_sess, # os.path.join(out_dir, "translate.ckpt"), # global_step=global_step) # run_sample_decode(infer_model, infer_sess, # model_dir, hparams, summary_writer, sample_src_data, # sample_tgt_data) # dev_scores, test_scores, _ = run_external_eval( # infer_model, infer_sess, model_dir, # hparams, summary_writer) # Done training loaded_train_model.saver.save(train_sess, os.path.join(out_dir, "translate.ckpt"), global_step=global_step) result_summary, _, dev_scores, test_scores, dev_ppl, test_ppl = run_full_eval( model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) utils.print_out( "# Final, step %d lr %g " "step-time %.2f wps %.2fK ppl %.2f, %s, %s" % (global_step, loaded_train_model.learning_rate.eval(session=train_sess), avg_step_time, speed, train_ppl, result_summary, time.ctime()), log_f) utils.print_time("# Done training!", start_train_time) utils.print_out("# Start evaluating saved best models.") for metric in hparams.metrics: best_model_dir = getattr(hparams, "best_" + metric + "_dir") result_summary, best_global_step, _, _, _, _ = run_full_eval( best_model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) utils.print_out( "# Best %s, step %d " "step-time %.2f wps %.2fK, %s, %s" % (metric, best_global_step, avg_step_time, speed, result_summary, time.ctime()), log_f) summary_writer.close() return (dev_scores, test_scores, dev_ppl, test_ppl, global_step)
def train(hparams, scope=None, target_session=""): """Train a translation model.""" log_device_placement = hparams.log_device_placement out_dir = hparams.out_dir num_train_steps = hparams.num_train_steps steps_per_stats = hparams.steps_per_stats steps_per_external_eval = hparams.steps_per_external_eval steps_per_eval = 10 * steps_per_stats if not steps_per_external_eval: steps_per_external_eval = 5 * steps_per_eval print(hparams.attention) if hparams.attention.strip() == "": model_creator = nmt_model.Model print("using nmt model " + hparams.attention + "done") elif hparams.attention_architecture == "standard": model_creator = attention_model.AttentionModel print("using attention model " + hparams.attention + "done") elif hparams.attention_architecture in ["gnmt", "gnmt_v2"]: model_creator = gnmt_model.GNMTModel print("using gnmt model") else: raise ValueError("Unknown model architecture") train_model = model_helper.create_train_model(model_creator, hparams, scope) eval_model = model_helper.create_eval_model(model_creator, hparams, scope) infer_model = model_helper.create_infer_model(model_creator, hparams, scope) # Preload data for sample decoding. dev_src_file = hparams.dev_src dev_tgt_file = hparams.dev_tgt sample_src_data = inference.load_data(dev_src_file) sample_tgt_data = inference.load_data(dev_tgt_file) summary_name = "train_log" # # Log and output files log_file = os.path.join(out_dir, "log_%d" % time.time()) log_f = tf.gfile.GFile(log_file, mode="a") utils.print_out("# log_file=%s" % log_file, log_f) avg_step_time = 0.0 model_dir = hparams.out_dir # TensorFlow model config_proto = utils.get_config_proto( log_device_placement=log_device_placement) train_sess = tf.Session(target=target_session, config=config_proto, graph=train_model.graph) eval_sess = tf.Session(target=target_session, config=config_proto, graph=eval_model.graph) infer_sess = tf.Session(target=target_session, config=config_proto, graph=infer_model.graph) with train_model.graph.as_default(): loaded_train_model, global_step = model_helper.create_model_Alveo( train_model.model, train_sess, "train") # Summary writer summary_writer = tf.summary.FileWriter(os.path.join(out_dir, summary_name), train_model.graph) # First evaluation run_full_eval(model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) last_stats_step = global_step last_eval_step = global_step last_external_eval_step = global_step # This is the training loop. stats = init_stats() speed, train_ppl = 0.0, 0.0 start_train_time = time.time() utils.print_out( "# Start step %d, lr %g, %s" % (global_step, loaded_train_model.learning_rate.eval( session=train_sess), time.ctime()), log_f) # Initialize all of the iterators skip_count = hparams.batch_size * hparams.epoch_step utils.print_out("# Init train iterator, skipping %d elements" % skip_count) train_sess.run(train_model.iterator.initializer, feed_dict={train_model.skip_count_placeholder: skip_count}) while global_step < num_train_steps: ### Run a step ### start_time = time.time() try: step_result = loaded_train_model.train(train_sess) hparams.epoch_step += 1 except tf.errors.OutOfRangeError: # Finished going through the training dataset. Go to next epoch. hparams.epoch_step = 0 utils.print_out( "# Finished an epoch, step %d. Perform external evaluation" % global_step) run_sample_decode(infer_model, infer_sess, model_dir, hparams, summary_writer, sample_src_data, sample_tgt_data) dev_scores, test_scores, _ = run_external_eval( infer_model, infer_sess, model_dir, hparams, summary_writer) train_sess.run(train_model.iterator.initializer, feed_dict={train_model.skip_count_placeholder: 0}) continue # Write step summary and accumulate statistics global_step = update_stats(stats, summary_writer, start_time, step_result) # Once in a while, we print statistics. if global_step - last_stats_step >= steps_per_stats: last_stats_step = global_step is_overflow = check_stats(stats, global_step, steps_per_stats, hparams, log_f) if is_overflow: break # Reset statistics stats = init_stats() if global_step - last_eval_step >= steps_per_eval: last_eval_step = global_step utils.print_out("# Save eval, global step %d" % global_step) utils.add_summary(summary_writer, global_step, "train_ppl", train_ppl) # Save checkpoint loaded_train_model.saver.save(train_sess, os.path.join(out_dir, "translate.ckpt"), global_step=global_step) # Evaluate on dev/test run_sample_decode(infer_model, infer_sess, model_dir, hparams, summary_writer, sample_src_data, sample_tgt_data) dev_ppl, test_ppl = run_internal_eval(eval_model, eval_sess, model_dir, hparams, summary_writer) if global_step - last_external_eval_step >= steps_per_external_eval: last_external_eval_step = global_step # Save checkpoint loaded_train_model.saver.save(train_sess, os.path.join(out_dir, "translate.ckpt"), global_step=global_step) run_sample_decode(infer_model, infer_sess, model_dir, hparams, summary_writer, sample_src_data, sample_tgt_data) dev_scores, test_scores, _ = run_external_eval( infer_model, infer_sess, model_dir, hparams, summary_writer) # Done training loaded_train_model.saver.save(train_sess, os.path.join(out_dir, "translate.ckpt"), global_step=global_step) result_summary, _, dev_scores, test_scores, dev_ppl, test_ppl = run_full_eval( model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) utils.print_out( "# Final, step %d lr %g " "step-time %.2f wps %.2fK ppl %.2f, %s, %s" % (global_step, loaded_train_model.learning_rate.eval(session=train_sess), avg_step_time, speed, train_ppl, result_summary, time.ctime()), log_f) utils.print_time("# Done training!", start_train_time) summary_writer.close() utils.print_out("# Start evaluating saved best models.") for metric in hparams.metrics: best_model_dir = getattr(hparams, "best_" + metric + "_dir") summary_writer = tf.summary.FileWriter( os.path.join(best_model_dir, summary_name), infer_model.graph) result_summary, best_global_step, _, _, _, _ = run_full_eval( best_model_dir, infer_model, infer_sess, eval_model, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data) utils.print_out( "# Best %s, step %d " "step-time %.2f wps %.2fK, %s, %s" % (metric, best_global_step, avg_step_time, speed, result_summary, time.ctime()), log_f) summary_writer.close() return (dev_scores, test_scores, dev_ppl, test_ppl, global_step)