Exemple #1
0
 def test_DATAAUGMENTATION_parameter_classification(self):
     data_aug = Data_Augmentation()
     data_aug.config_p_per_sample = 1
     data_aug.seg_augmentation = False
     img_aug, seg_aug = data_aug.run(self.img3D, self.seg3D)
     self.assertFalse(np.array_equal(img_aug, self.img3D))
     self.assertTrue(np.array_equal(seg_aug, self.seg3D))
Exemple #2
0
 def test_DATAAUGMENTATION_BASE_create(self):
     data_Aug = Data_Augmentation()
     self.assertIsInstance(data_Aug, Data_Augmentation)
     Data_Augmentation(cycles=5)
     Data_Augmentation(cycles=1,
                       scaling=True,
                       rotations=True,
                       elastic_deform=False,
                       mirror=False,
                       brightness=True,
                       contrast=True,
                       gamma=True,
                       gaussian_noise=True)
Exemple #3
0
 def test_DATAAUGMENTATION_parameter_gaussiannoise(self):
     data_aug = Data_Augmentation(cycles=1,
                                  scaling=False,
                                  rotations=False,
                                  elastic_deform=False,
                                  mirror=False,
                                  brightness=False,
                                  contrast=False,
                                  gamma=False,
                                  gaussian_noise=True)
     data_aug.config_p_per_sample = 1
     img_aug, seg_aug = data_aug.run(self.img3D, self.seg3D)
     self.assertFalse(np.array_equal(img_aug, self.img3D))
     self.assertTrue(np.array_equal(seg_aug, self.seg3D))
Exemple #4
0
 def test_DATAAUGMENTATION_parameter_cropping(self):
     data_aug = Data_Augmentation(cycles=1,
                                  scaling=False,
                                  rotations=False,
                                  elastic_deform=False,
                                  mirror=False,
                                  brightness=False,
                                  contrast=False,
                                  gamma=False,
                                  gaussian_noise=False)
     data_aug.cropping = True
     data_aug.cropping_patch_shape = (4, 4, 4)
     img_aug, seg_aug = data_aug.run(self.img3D, self.seg3D)
     self.assertEqual(img_aug.shape, (1, 4, 4, 4, 1))
     self.assertEqual(seg_aug.shape, (1, 4, 4, 4, 3))
Exemple #5
0
 def setUpClass(self):
     np.random.seed(1234)
     # Create imgaging and segmentation data set
     self.dataset = dict()
     for i in range(0, 10):
         img = np.random.rand(16, 16, 16) * 255
         self.img = img.astype(int)
         seg = np.random.rand(16, 16, 16) * 3
         self.seg = seg.astype(int)
         sample = (self.img, self.seg)
         self.dataset["TEST.sample_" + str(i)] = sample
     # Initialize Dictionary IO Interface
     io_interface = Dictionary_interface(self.dataset,
                                         classes=3,
                                         three_dim=True)
     # Initialize temporary directory
     self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.")
     tmp_batches = os.path.join(self.tmp_dir.name, "batches")
     # Initialize Data IO
     self.data_io = Data_IO(io_interface,
                            input_path="",
                            output_path="",
                            batch_path=tmp_batches,
                            delete_batchDir=False)
     # Initialize Data Augmentation
     self.data_aug = Data_Augmentation()
     # Get sample list
     self.sample_list = self.data_io.get_indiceslist()
Exemple #6
0
 def test_DATAAUGMENTATION_parameter_percentage(self):
     data_aug = Data_Augmentation(cycles=100,
                                  scaling=True,
                                  rotations=False,
                                  elastic_deform=False,
                                  mirror=False,
                                  brightness=False,
                                  contrast=False,
                                  gamma=False,
                                  gaussian_noise=False)
     data_aug.config_p_per_sample = 0.3
     img_aug, seg_aug = data_aug.run(self.img3D, self.seg3D)
     counter_equal = 0
     for i in range(0, 100):
         is_equal = np.array_equal(img_aug[i], self.img3D[0])
         if is_equal: counter_equal += 1
     ratio = counter_equal / 100
     self.assertTrue(ratio >= 0.5 and ratio <= 0.9)
Exemple #7
0
 def test_MODEL_predictionAugmentated_2D(self):
     data_aug = Data_Augmentation()
     pp = Preprocessor(self.data_io2D,
                       batch_size=2,
                       data_aug=data_aug,
                       analysis="fullimage")
     nn = Neural_Network(preprocessor=pp)
     for sample in self.sample_list2D:
         predictions = nn.predict_augmentated(sample)
         self.assertEqual(len(predictions), 2)
         for pred in predictions:
             self.assertEqual(pred.shape, (16, 16, 3))
Exemple #8
0
 def test_DATAAUGMENTATION_BASE_cycles(self):
     with self.assertRaises(Exception):
         data_aug = Data_Augmentation(cycles=0)
         img_aug, seg_aug = data_aug.run(self.img2D, self.seg2D)
     for i in range(1, 50, 5):
         data_aug = Data_Augmentation(cycles=i)
         img_aug, seg_aug = data_aug.run(self.img2D, self.seg2D)
         self.assertEqual(img_aug.shape[0], i)
Exemple #9
0
 def test_DATAGENERATOR_augcyling(self):
     data_aug = Data_Augmentation(cycles=20)
     pp_fi = Preprocessor(self.data_io,
                          batch_size=4,
                          data_aug=data_aug,
                          prepare_subfunctions=False,
                          prepare_batches=False,
                          analysis="fullimage")
     data_gen = DataGenerator(self.sample_list,
                              pp_fi,
                              training=True,
                              shuffle=False,
                              iterations=None)
     self.assertEqual(50, len(data_gen))
Exemple #10
0
 def test_MODEL_predictionAugmentated_3D(self):
     data_aug = Data_Augmentation()
     pp = Preprocessor(self.data_io3D,
                       batch_size=1,
                       patch_shape=(8, 8, 8),
                       data_aug=data_aug,
                       analysis="patchwise-crop")
     nn = Neural_Network(preprocessor=pp,
                         architecture=UNet_standard(depth=2))
     for sample in self.sample_list3D:
         predictions = nn.predict_augmentated(sample)
         self.assertEqual(len(predictions), 3)
         for pred in predictions:
             self.assertEqual(pred.shape, (16, 16, 16, 3))
Exemple #11
0
 def test_DATAAUGMENTATION_BASE_infauf(self):
     data_aug = Data_Augmentation()
     data_aug.infaug = True
     for axis in data_aug.infaug_flip_list:
         data_aug.infaug_flip_current = axis
         img_aug = data_aug.run_infaug(self.img3D)
         self.assertFalse(np.array_equal(img_aug, self.img3D))
         img_aug = data_aug.run_infaug(img_aug)
         self.assertTrue(np.array_equal(img_aug, self.img3D))
Exemple #12
0
 def test_DATAGENERATOR_inferenceAug(self):
     data_aug = Data_Augmentation()
     pp_fi = Preprocessor(self.data_io,
                          batch_size=4,
                          data_aug=data_aug,
                          prepare_subfunctions=False,
                          prepare_batches=False,
                          analysis="fullimage")
     data_gen = DataGenerator([self.sample_list[0]],
                              pp_fi,
                              training=False,
                              shuffle=False,
                              iterations=None)
     pred_list_inactive = []
     for batch in data_gen:
         pred_list_inactive.append(batch)
     data_aug.infaug = True
     pred_list_active = []
     for batch in data_gen:
         pred_list_active.append(batch)
     for i in range(0, len(pred_list_active)):
         ba = pred_list_active[i]
         bi = pred_list_inactive[i]
         self.assertFalse(np.array_equal(ba, bi))
Exemple #13
0
 def test_DATAAUGMENTATION_BASE_run2D(self):
     data_aug = Data_Augmentation()
     data_aug.config_p_per_sample = 1
     img_aug, seg_aug = data_aug.run(self.img2D, self.seg2D)
     self.assertEqual(img_aug.shape, self.img2D.shape)
     self.assertFalse(np.array_equal(img_aug, self.img2D))
     self.assertEqual(seg_aug.shape, self.seg2D.shape)
     self.assertFalse(np.array_equal(seg_aug, self.seg2D))
     data_aug = Data_Augmentation(cycles=1,
                                  scaling=False,
                                  rotations=False,
                                  elastic_deform=False,
                                  mirror=False,
                                  brightness=False,
                                  contrast=False,
                                  gamma=False,
                                  gaussian_noise=False)
     img_aug, seg_aug = data_aug.run(self.img2D, self.seg2D)
     self.assertTrue(np.array_equal(img_aug, self.img2D))
Exemple #14
0
#               Setup of MIScnn Pipeline              #
#-----------------------------------------------------#
# Initialize Data IO Interface for NIfTI data
## We are using 4 classes due to [background, lung_left, lung_right, covid-19]
interface = NIFTI_interface(channels=1, classes=4)

# Create Data IO object to load and write samples in the file structure
data_io = Data_IO(interface, input_path="data", delete_batchDir=False)

# Access all available samples in our file structure
sample_list = data_io.get_indiceslist()
sample_list.sort()

# Create and configure the Data Augmentation class
data_aug = Data_Augmentation(cycles=1, scaling=True, rotations=True,
                             elastic_deform=True, mirror=True,
                             brightness=True, contrast=True, gamma=True,
                             gaussian_noise=True)

# Create a clipping Subfunction to the lung window of CTs (-1250 and 250)
sf_clipping = Clipping(min=-1250, max=250)
# Create a pixel value normalization Subfunction to scale between 0-255
sf_normalize = Normalization(mode="grayscale")
# Create a resampling Subfunction to voxel spacing 1.58 x 1.58 x 2.70
sf_resample = Resampling((1.58, 1.58, 2.70))
# Create a pixel value normalization Subfunction for z-score scaling
sf_zscore = Normalization(mode="z-score")

# Assemble Subfunction classes into a list
sf = [sf_clipping, sf_normalize, sf_resample, sf_zscore]

# Create and configure the Preprocessor class