Exemple #1
0
def model_mil(train_bags, train_labels, test_bags, test_labels):
    start_time = datetime.now()
    classifiers = {}
    classifiers['MissSVM'] = misvm.MissSVM(kernel='linear',
                                           C=1.0,
                                           max_iters=20)
    classifiers['sbMIL'] = misvm.sbMIL(kernel='linear', eta=0.1, C=1e2)
    classifiers['SIL'] = misvm.SIL(kernel='linear', C=1.0)

    # Train/Evaluate classifiers
    perf = {}
    for algorithm, classifier in classifiers.items():
        classifier.fit(train_bags, train_labels)
        predictions = classifier.predict(test_bags)
        if algorithm == 'sbMIL' or algorithm == 'MissSVM':
            predictions = np.sign(predictions) + 1
        [[TN, FP], [FN, TP]] = confusion_matrix(test_labels, predictions)
        FDR = TP / (TP + FN)
        FAR = FP / (TN + FP)
        perf[algorithm] = {'FDR': FDR, 'FAR': FAR}
        print '[%s]algorithm %s done...' % (time.asctime(
            time.localtime(time.time())), algorithm)
    print '[%s]%s done for %d seconds...' % (time.asctime(
        time.localtime(time.time())), sys._getframe().f_code.co_name,
                                             (datetime.now() -
                                              start_time).seconds)
    return perf
Exemple #2
0
def main():
    # Load list of C4.5 Examples
    example_set = parse_c45('musk1')
    table = re.findall(r"<(.*)>", str(example_set))
    output.write(str(example_set))
    print(len(table))
    print(table)

    # Get stats to normalize data
    raw_data = np.array(example_set.to_float())
    data_mean = np.average(raw_data, axis=0)
    data_std = np.std(raw_data, axis=0)
    data_std[np.nonzero(data_std == 0.0)] = 1.0

    def normalizer(ex):
        ex = np.array(ex)
        normed = ((ex - data_mean) / data_std)
        # The ...[:, 2:-1] removes first two columns and last column,
        # which are the bag/instance ids and class label, as part of the
        # normalization process
        return normed[2:-1]

    # Group examples into bags
    bagset = bag_set(example_set)

    # Convert bags to NumPy arrays
    bags = [np.array(b.to_float(normalizer)) for b in bagset]
    labels = np.array([b.label for b in bagset], dtype=float)
    # Convert 0/1 labels to -1/1 labels
    labels = 2 * labels - 1

    # Spilt dataset arbitrarily to train/test sets
    train_bags = bags[10:]
    train_labels = labels[10:]
    test_bags = bags[:10]
    test_labels = labels[:10]

    # Construct classifiers
    classifiers = {}
    classifiers['MissSVM'] = misvm.MissSVM(kernel='linear',
                                           C=1.0,
                                           max_iters=20)
    classifiers['sbMIL'] = misvm.sbMIL(kernel='linear', eta=0.1, C=1e2)
    classifiers['SIL'] = misvm.SIL(kernel='linear', C=1.0)

    # Train/Evaluate classifiers
    accuracies = {}
    for algorithm, classifier in classifiers.items():
        classifier.fit(train_bags, train_labels)
        predictions = classifier.predict(test_bags)
        accuracies[algorithm] = np.average(test_labels == np.sign(predictions))

    for algorithm, accuracy in accuracies.items():
        print('\n%s Accuracy: %.1f%%' % (algorithm, 100 * accuracy))
        output.write('\n%s Accuracy: %.1f%%' % (algorithm, 100 * accuracy))
Exemple #3
0
def run_mil_classifier(train_bags, train_labels, test_bags, test_labels):
    classifiers = {}
    classifiers['MissSVM'] = misvm.MissSVM(kernel='linear', C=1.0, max_iters=10)
    classifiers['sbMIL'] = misvm.sbMIL(kernel='linear', eta=0.1, C=1.0)
    #classifiers['SIL'] = misvm.SIL(kernel='linear', C=1.0)

    # Train/Evaluate classifiers
    accuracies = {}
    for algorithm, classifier in classifiers.items():
        classifier.fit(train_bags, train_labels)
        predictions = classifier.predict(test_bags)
        accuracies[algorithm] = np.average(test_labels == np.sign(predictions))

    for algorithm, accuracy in accuracies.items():
        print '\n%s Accuracy: %.1f%%' % (algorithm, 100 * accuracy)
Exemple #4
0
def main():
    # Load list of C4.5 Examples
    example_set = parse_c45('musk1')

    # Group examples into bags
    bagset = bag_set(example_set)

    # Convert bags to NumPy arrays
    # (The ...[:, 2:-1] removes first two columns and last column,
    #  which are the bag/instance ids and class label)
    bags = [np.array(b.to_float())[:, 2:-1] for b in bagset]
    labels = np.array([b.label for b in bagset], dtype=float)
    # Convert 0/1 labels to -1/1 labels
    labels = 2 * labels - 1

    # Spilt dataset arbitrarily to train/test sets
    train_bags = bags[10:]
    train_labels = labels[10:]
    test_bags = bags[:10]
    test_labels = labels[:10]

    # Construct classifiers
    classifiers = {}
    classifiers['MissSVM'] = misvm.MissSVM(kernel='linear',
                                           C=1.0,
                                           max_iters=10)
    classifiers['sbMIL'] = misvm.sbMIL(kernel='linear', eta=0.1, C=1.0)
    classifiers['SIL'] = misvm.SIL(kernel='linear', C=1.0)

    # Train/Evaluate classifiers
    accuracies = {}
    for algorithm, classifier in classifiers.items():
        classifier.fit(train_bags, train_labels)
        predictions = classifier.predict(test_bags)
        accuracies[algorithm] = np.average(test_labels == np.sign(predictions))

    for algorithm, accuracy in accuracies.items():
        print('\n%s Accuracy: %.1f%%' % (algorithm, 100 * accuracy))
def main():
    # Khoi tao du lieu
    train_data, val_data, test_data = get_dataset()

    train_bags, train_labels = train_data
    val_bags, val_labels = val_data
    test_bags, test_labels = test_data

    train_instances, train_ilabels = convert_bags_to_instances(
        train_bags, train_labels)
    val_instances, val_ilabels = convert_bags_to_instances(
        val_bags, val_labels)
    # global K
    # K = get_number_of_k_nearest_neighbors(train_instances, train_bags)
    # print('Number of K nearest neighbors:', K)
    # training
    global classifier
    classifier = Classifier(train_bags, train_labels)

    ALPHA = get_alpha_hat(val_instances, val_ilabels)
    BETA = get_beta(train_ilabels)

    # testing
    acc = 0
    for bag, blabel in zip(test_bags, test_labels):
        bpred = is_bag_pos(bag, ALPHA, BETA)
        acc += (blabel == bpred)
    print('Accuracy:', acc / len(test_bags))

    train_labels = np.array(train_labels) * 2 - 1
    test_labels = np.array(test_labels) * 2 - 1
    svm = misvm.MissSVM(kernel='linear', C=1.0, max_iters=20)
    svm.fit(train_bags, train_labels)
    predictions = svm.predict(test_bags)
    acc2 = np.average(test_labels == np.sign(predictions))
    print(acc2)