def train(self, training_data, mitie_file, num_threads):
        # type: (TrainingData, Text, Optional[int]) -> None
        import mitie

        trainer = mitie.text_categorizer_trainer(mitie_file)
        trainer.num_threads = num_threads
        for example in training_data.intent_examples:
            tokens = mitie.tokenize(example["text"])
            trainer.add_labeled_text(tokens, example["intent"])

        if training_data.intent_examples:
            # we can not call train if there are no examples!
            self.clf = trainer.train()
    def train(self, training_data, config,  **kwargs):
        # type: (TrainingData, RasaNLUConfig, **Any) -> None
        import mitie

        trainer = mitie.text_categorizer_trainer(config["mitie_file"])
        trainer.num_threads = config["num_threads"]
        for example in training_data.intent_examples:
            tokens = self._tokens_of_message(example)
            trainer.add_labeled_text(tokens, example.get("intent"))

        if training_data.intent_examples:
            # we can not call train if there are no examples!
            self.clf = trainer.train()
    def train(self, training_data, cfg, **kwargs):
        # type: (TrainingData, RasaNLUModelConfig, **Any) -> None
        import mitie

        model_file = kwargs.get("mitie_file")
        if not model_file:
            raise Exception("Can not run MITIE entity extractor without a "
                            "language model. Make sure this component is "
                            "preceeded by the 'nlp_mitie' component.")

        trainer = mitie.text_categorizer_trainer(model_file)
        trainer.num_threads = kwargs.get("num_threads", 1)

        for example in training_data.intent_examples:
            tokens = self._tokens_of_message(example)
            trainer.add_labeled_text(tokens, example.get("intent"))

        if training_data.intent_examples:
            # we can not call train if there are no examples!
            self.clf = trainer.train()
    def train(self, training_data: TrainingData, cfg: RasaNLUModelConfig,
              **kwargs: Any) -> None:
        import mitie

        model_file = kwargs.get("mitie_file")
        if not model_file:
            raise Exception("Can not run MITIE entity extractor without a "
                            "language model. Make sure this component is "
                            "preceeded by the 'MitieNLP' component.")

        trainer = mitie.text_categorizer_trainer(model_file)
        trainer.num_threads = kwargs.get("num_threads", 1)

        for example in training_data.intent_examples:
            tokens = self._tokens_of_message(example)
            trainer.add_labeled_text(tokens, example.get("intent"))

        if training_data.intent_examples:
            # we can not call train if there are no examples!
            self.clf = trainer.train()