def test_exp_factory_with_asympt(test_f: Callable[[float], float], avoid_log: bool): """Test of exponential extrapolator.""" seeded_f = apply_seed_to_func(test_f, SEED) fac = ExpFactory(X_VALS, asymptote=A, avoid_log=avoid_log) fac.run_classical(seeded_f) assert not fac._opt_params zne_value = fac.reduce() assert np.isclose(zne_value, seeded_f(0, err=0), atol=CLOSE_TOL) # There are three parameters in the exponential ansatz assert len(fac._opt_params) == 3 exp_vals = fac.get_expectation_values() assert np.isclose( fac.extrapolate(X_VALS, exp_vals, asymptote=A, avoid_log=avoid_log), zne_value, ) assert np.isclose( fac.extrapolate( X_VALS, exp_vals, asymptote=A, avoid_log=avoid_log, full_output=True, )[0], zne_value, )
def test_failing_fit_error(): """Test error handling for a failing fit.""" fac = ExpFactory(X_VALS, asymptote=None) fac._instack = [{"scale_factor": x} for x in X_VALS] fac._outstack = [1.0, 2.0, 1.0, 2.0, 1.0] with raises(ExtrapolationError, match=r"The extrapolation fit failed to converge."): fac.reduce() # test also the static "extrapolate" method. with raises(ExtrapolationError, match=r"The extrapolation fit failed to converge."): ExpFactory.extrapolate(X_VALS, [1.0, 2.0, 1.0, 2.0, 1.0])