def generate_figure_samples(samples_per_frame, n_frames, burnin = int(1e4)): """ Generates the figure :param samples_per_frame: number of sample steps between each frame :param n_frames: number of frames to draw :returns: None :rtype: None """ n_samples = samples_per_frame * n_frames ndims = 36 nbasis = 72 rand_val = rand(ndims,nbasis/2,density=0.25) W = np.concatenate([rand_val.toarray(), -rand_val.toarray()],axis=1) logalpha = np.random.randn(nbasis, 1) poe = ProductOfT(nbatch=1, W=W, logalpha=logalpha) ## NUTS uses a different number of grad evals for each update step!! ## makes it very hard to compare against others w/ same number of update steps # # NUTS # print "NUTS" # nuts_init = poe.Xinit[:, 0] # nuts_samples = nuts6(poe.reset(), n_samples, nuts_burnin, nuts_init)[0] # nuts_frames = [nuts_samples[f_idx * samples_per_frame, :] for f_idx in xrange(0, n_frames)] # x_init = nuts_samples[0, :].reshape(ndims, 1) ## burnin print "MJHMC burnin" x_init = poe.Xinit #[:, [0]] mjhmc = MarkovJumpHMC(distribution=poe.reset(), **mjhmc_params) mjhmc.state = HMCState(x_init.copy(), mjhmc) mjhmc_samples = mjhmc.sample(burnin) print mjhmc_samples.shape x_init = mjhmc_samples[:, [0]] # control HMC print "Control" hmc = ControlHMC(distribution=poe.reset(), **control_params) hmc.state = HMCState(x_init.copy(), hmc) hmc_samples = hmc.sample(n_samples) hmc_frames = [hmc_samples[:, f_idx * samples_per_frame].copy() for f_idx in xrange(0, n_frames)] # MJHMC print "MJHMC" mjhmc = MarkovJumpHMC(distribution=poe.reset(), resample=False, **mjhmc_params) mjhmc.state = HMCState(x_init.copy(), mjhmc) mjhmc_samples = mjhmc.sample(n_samples) mjhmc_frames = [mjhmc_samples[:, f_idx * samples_per_frame].copy() for f_idx in xrange(0, n_frames)] print mjhmc.r_count, hmc.r_count print mjhmc.l_count, hmc.l_count print mjhmc.f_count, hmc.f_count print mjhmc.fl_count, hmc.fl_count frames = [mjhmc_frames, hmc_frames] names = ['MJHMC', 'ControlHMC'] frame_grads = [f_idx * samples_per_frame for f_idx in xrange(0, n_frames)] return frames, names, frame_grads
def generate_figure_samples(samples_per_frame, n_frames, burnin=int(1e4)): """ Generates the figure :param samples_per_frame: number of sample steps between each frame :param n_frames: number of frames to draw :returns: None :rtype: None """ n_samples = samples_per_frame * n_frames ndims = 36 nbasis = 72 rand_val = rand(ndims, nbasis / 2, density=0.25) W = np.concatenate([rand_val.toarray(), -rand_val.toarray()], axis=1) logalpha = np.random.randn(nbasis, 1) poe = ProductOfT(nbatch=1, W=W, logalpha=logalpha) ## NUTS uses a different number of grad evals for each update step!! ## makes it very hard to compare against others w/ same number of update steps # # NUTS # print "NUTS" # nuts_init = poe.Xinit[:, 0] # nuts_samples = nuts6(poe.reset(), n_samples, nuts_burnin, nuts_init)[0] # nuts_frames = [nuts_samples[f_idx * samples_per_frame, :] for f_idx in xrange(0, n_frames)] # x_init = nuts_samples[0, :].reshape(ndims, 1) ## burnin print "MJHMC burnin" x_init = poe.Xinit # [:, [0]] mjhmc = MarkovJumpHMC(distribution=poe.reset(), **mjhmc_params) mjhmc.state = HMCState(x_init.copy(), mjhmc) mjhmc_samples = mjhmc.sample(burnin) print mjhmc_samples.shape x_init = mjhmc_samples[:, [0]] # control HMC print "Control" hmc = ControlHMC(distribution=poe.reset(), **control_params) hmc.state = HMCState(x_init.copy(), hmc) hmc_samples = hmc.sample(n_samples) hmc_frames = [hmc_samples[:, f_idx * samples_per_frame].copy() for f_idx in xrange(0, n_frames)] # MJHMC print "MJHMC" mjhmc = MarkovJumpHMC(distribution=poe.reset(), resample=False, **mjhmc_params) mjhmc.state = HMCState(x_init.copy(), mjhmc) mjhmc_samples = mjhmc.sample(n_samples) mjhmc_frames = [mjhmc_samples[:, f_idx * samples_per_frame].copy() for f_idx in xrange(0, n_frames)] print mjhmc.r_count, hmc.r_count print mjhmc.l_count, hmc.l_count print mjhmc.f_count, hmc.f_count print mjhmc.fl_count, hmc.fl_count frames = [mjhmc_frames, hmc_frames] names = ["MJHMC", "ControlHMC"] frame_grads = [f_idx * samples_per_frame for f_idx in xrange(0, n_frames)] return frames, names, frame_grads
def check_variance(): """ Simple benchmark that estimates the variance a ton of times and writes to file the results :returns: Nothing :rtype: None """ from mjhmc.misc.gen_mj_init import generate_initialization np.random.seed(2015) poe = ProductOfT(nbatch=1000, ndims=36, nbasis=36) var_estimates = [] for trial_idx in xrange(100): _, var_estimate = generate_initialization(poe.reset()) var_estimates.append(var_estimate) with open("var_log.txt", 'a') as vlog: vlog.write("Trial {} variance {}\n".format(trial_idx, var_estimate)) vlog.write("Variance of variance estimates so far {}".format(np.var(var_estimates)))