def from_config(cls, global_config): all_metrics = cls(global_config) for metric_config in all_metrics.metric_config: subcls = find_subclass_by_name(MLMetric, metric_config.metric_name) metric_obj = subcls.from_config(global_config, metric_config) metric_list = None if subcls in all_subclasses(StepMetric): metric_list = all_metrics.step_metrics if subcls in all_subclasses(EndingMetric): metric_list = all_metrics.ending_metrics metric_list.append(metric_obj) return all_metrics
def from_config(cls, global_config): subcls = find_subclass_by_name(cls, global_config.graph.graph_name) return subcls.from_config(global_config)
def from_config(cls, global_config): io_config = global_config.io subcls = find_subclass_by_name(cls, io_config.io_name) return subcls.from_config(global_config)
def from_config(cls, global_config, metric_config): subcls = find_subclass_by_name(cls, metric_config.metric_name) return subcls.from_config(global_config, metric_config)
def from_config(cls, global_config): trainer_config = global_config.trainer subcls = find_subclass_by_name(cls, trainer_config.trainer_name) return subcls.from_config(global_config)
def from_config(cls, graph_config): subcls = find_subclass_by_name(cls, graph_config.model_name) return subcls.from_config(graph_config)
def from_config(cls, global_config): predictor_config = global_config.predictor subcls = find_subclass_by_name(cls, predictor_config.predictor_name) return subcls.from_config(global_config)