from ml.non_linear_classification import non_separable_train

layout = html.Div([
    common.navbar("Classification - Linearly Non-Separable"),
    html.Div([], style = {'padding': '30px'}),
    html.Br(),
    html.Div([
        html.H2("Load and Select a file from all the cleaned files:"),
        dbc.Button("Load Cleaned File", color="primary", id = 'nlcl-load-cleaned-files', className="mr-2", style={'display': 'inline-block'}),
        dbc.Button("Clear", color="secondary", id = 'nlcl-clear-db', className="mr-2", style={'display': 'inline-block'})
    ],style = {'margin': '10px'}),
    html.Div([
    dcc.Dropdown(
        id = 'nlcl-selected-cleaned-file',
        options = common.get_options('clean'),
        value = None,
        multi = False
    )],
    style = {'margin': '10px', 'width': '50%'}),
    html.Div([], id = "nlcl-clear-db-do-nothing"),
    html.Div([],id = "nlcl-selected-div")
])

@app.callback(
    Output("nlcl-selected-cleaned-file", "options"),
    [Input('nlcl-load-cleaned-files', 'n_clicks')]
)
def selected_file(n_clicks):
    return common.get_options('clean')
def selected_file(n_clicks):
    return common.get_options('clean')
Exemple #3
0
def upload_data(contents, filename):
    """Upload Files and Regenerate the file list."""
    if contents:
        for i in range(len(filename)):
            FileUtils.upload(filename[i], contents[i])
    return common.get_options('raw')