from ml.non_linear_classification import non_separable_train layout = html.Div([ common.navbar("Classification - Linearly Non-Separable"), html.Div([], style = {'padding': '30px'}), html.Br(), html.Div([ html.H2("Load and Select a file from all the cleaned files:"), dbc.Button("Load Cleaned File", color="primary", id = 'nlcl-load-cleaned-files', className="mr-2", style={'display': 'inline-block'}), dbc.Button("Clear", color="secondary", id = 'nlcl-clear-db', className="mr-2", style={'display': 'inline-block'}) ],style = {'margin': '10px'}), html.Div([ dcc.Dropdown( id = 'nlcl-selected-cleaned-file', options = common.get_options('clean'), value = None, multi = False )], style = {'margin': '10px', 'width': '50%'}), html.Div([], id = "nlcl-clear-db-do-nothing"), html.Div([],id = "nlcl-selected-div") ]) @app.callback( Output("nlcl-selected-cleaned-file", "options"), [Input('nlcl-load-cleaned-files', 'n_clicks')] ) def selected_file(n_clicks): return common.get_options('clean')
def selected_file(n_clicks): return common.get_options('clean')
def upload_data(contents, filename): """Upload Files and Regenerate the file list.""" if contents: for i in range(len(filename)): FileUtils.upload(filename[i], contents[i]) return common.get_options('raw')