Exemple #1
0
import numpy as np

dataset = ml.Dataset('./dataset')
print dataset

fcd = dict(features=['mfcc'], mfcc_coeff=13)
fc = ml.FeaturesConfig(**fcd)
print fc

rcd = dict(feature_reduction='pca')
rc = ml.ReductionConfig(**rcd)
print rc

train_fe = ml.AudioFeatures(files=dataset.train_files,
                            features_cfg=fc,
                            reduction_cfg=rc).extract()
#train_fe.save('./genres/train')
print train_fe
test_fe = ml.AudioFeatures(files=dataset.test_files,
                           features_cfg=fc,
                           reduction_cfg=rc).extract()
#test_fe.save('./genres/test')
print test_fe

net = ml.MLP(train_fe.features_dim, train_fe.classes,
             [280, 300, 400, 600, 800])
#net = ml.MLP(train_fe.features_dim, train_fe.classes, [280, 300, 560, 720])
#net = gd.Network(20, 10, [200, 400, 800, 1600, 3200])
print net
net.train(train=train_fe, test=test_fe, epochs=500)
Exemple #2
0
import ml

d = ml.Dataset('/home/danish/Projects/Music-Genre-Classification/DataSet/wav (copy)')

fcd = dict(features=['mfcc', 'mel_spec'], coeffs=dict(mfcc_coeff=20))
fc = ml.FeaturesConfig(**fcd)
print(fc)

rc = ml.ReductionConfig()
print(rc)

train_fe = ml.AudioFeatures(files=d.train_files, features_cfg=fc, reduction_cfg=rc).extract()
test_fe = ml.AudioFeatures(files=d.test_files, features_cfg=fc, reduction_cfg=rc).extract()

ncd = dict(features_dim=train_fe.features_dim, classes=train_fe.classes,
           hidden_units=[300, 350, 550, 900], learn_rate=0.01)
nc = ml.NetworkConfig(**ncd)

net = ml.MLP(nc)
print(net)

net.train(train=train_fe, test=test_fe, epochs=500)

svm = ml.SVM(features_dim=train_fe.features_dim, classes=train_fe.classes, svm_type='nu', kernel='linear', poly_degree=3)
print(svm)

svm.train(train=train_fe, test=test_fe)

Exemple #3
0
def main(n_hiddens=400,
         n_layers=2,
         learning_rate=0.001,
         momentum=0.5,
         rbm_learning_rate=[0.001, 0.001],
         rbm_epochs=32,
         rbm_batch_size=100,
         example_dropout=32,
         hidden_dropout=.5,
         rmsprop=True,
         max_col_norm=1.8356,
         l2=None,
         train_epochs=200,
         K=1,
         features="minimal.pca",
         state=None,
         channel=None,
         **kwargs):

    print "Loading dataset..."

    numpy.random.seed(0x7265257d5f)

    LABELS = [
        "Disgust", "Fear", "Happy", "Neutral", "Sad", "Surprise", "Angry"
    ]

    train_x = []
    train_y = []
    for directory, dirnames, filenames in os.walk(
            "/data/lisa/data/faces/EmotiW/complete_audio_features/Train"):
        for filename in filenames:
            if filename.find("%s.pkl" % features) != -1:
                feat = numpy.load(os.path.join(directory, filename))
                targ = numpy.argmax(
                    map(lambda x: directory.find(x) != -1, LABELS))

                train_x.append(numpy.asarray(feat, theano.config.floatX))
                train_y.append(targ)
    train_y = numpy.asarray(train_y)

    pretrain_x = numpy.load(
        "/data/lisatmp/dauphiya/emotiw/mlp_audio/train_x_%s.npy" % features)

    valid_x = []
    valid_y = []
    for directory, dirnames, filenames in os.walk(
            "/data/lisa/data/faces/EmotiW/complete_audio_features/Val"):
        for filename in filenames:
            if filename.find("%s.pkl" % features) != -1:
                feat = numpy.load(os.path.join(directory, filename))
                targ = numpy.argmax(
                    map(lambda x: directory.find(x) != -1, LABELS))

                valid_x.append(numpy.asarray(feat, theano.config.floatX))
                valid_y.append(targ)
    valid_y = numpy.asarray(train_y, dtype=theano.config.floatX)

    import ipdb
    ipdb.set_trace()
    means = numpy.asarray(numpy.sum([x.sum(0) for x in train_x], 0) /
                          sum([x.shape[0] for x in train_x]),
                          dtype=theano.config.floatX)

    train_inds = range(len(train_x))
    numpy.random.shuffle(train_inds)

    print "Building model..."

    layers = n_layers * [('T', n_hiddens)] + [('S', train_y.max() + 1)]

    if type(rbm_learning_rate) in [str, unicode]:
        rbm_learning_rate = eval(rbm_learning_rate)

    if type(rbm_learning_rate) is float:
        rbm_learning_rate = len(layers) * [rbm_learning_rate]

    model = ml.MLP(n_in=train_x[0].shape[1],
                   layers=layers,
                   learning_rate=learning_rate,
                   l2=l2,
                   rmsprop=rmsprop,
                   max_col_norm=max_col_norm,
                   hidden_dropout=hidden_dropout,
                   momentum=momentum)

    rbms = []

    def project(x):
        for rbm in rbms:
            x = rbm.mean_h(x)
        return x

    for i in range(len(layers) - 1):
        print "Training RBM %d..." % i
        if i == 0:
            rbm = ml.GaussianRBM(n_hiddens=n_hiddens,
                                 epsilon=rbm_learning_rate[i],
                                 n_samples=rbm_batch_size,
                                 epochs=rbm_epochs,
                                 K=K)
        else:
            rbm = ml.BinaryRBM(n_hiddens=n_hiddens,
                               epsilon=rbm_learning_rate[i],
                               n_samples=rbm_batch_size,
                               epochs=rbm_epochs,
                               K=K)

        rbm.fit(pretrain_x, project=project, verbose=True)

        model.layers[i].W.set_value(rbm.W)
        model.layers[i].b.set_value(rbm.c)

        numpy.save("rbm_W_%d.npy" % i, rbm.W)

        rbms.append(rbm)

    print "Training model..."

    epoch_times = []

    best_train_error = float('inf')

    best_valid_error = float('inf')

    for epoch in range(train_epochs):
        begin = time.time()

        losses = []

        for minibatch in range(len(train_inds)):
            x = train_x[train_inds[minibatch]] - means
            y = train_y[[train_inds[minibatch]]]

            inds = range(x.shape[0])
            numpy.random.shuffle(inds)
            inds = inds[:example_dropout]

            losses.append(model.train(x[inds], y))
        end = time.time()

        loss = numpy.mean(losses)

        train_error = 0.
        for minibatch in range(len(train_inds)):
            x = train_x[train_inds[minibatch]] - means
            y = train_y[train_inds[minibatch]]

            train_error += (y != model.output(x))[0]
        train_error /= len(train_inds)

        valid_error = 0.
        for minibatch in range(len(valid_y)):
            x = valid_x[minibatch] - means
            y = valid_y[[minibatch]]

            valid_error += (y != model.output(x))[0]
        valid_error /= len(valid_y)

        epoch_times.append((end - begin) / 60)

        mean_epoch_time = numpy.mean(epoch_times)

        if train_error < best_train_error:
            best_train_error = train_error
        elif epoch > 50:
            model.trainer.learning_rate.set_value(
                numpy.asarray(0.98 * model.trainer.learning_rate.get_value(),
                              dtype=theano.config.floatX))

        if valid_error < best_valid_error:
            best_valid_error = valid_error

            model.save()
        elif epoch > 50:
            model.trainer.learning_rate.set_value(
                numpy.asarray(0.98 * model.trainer.learning_rate.get_value(),
                              dtype=theano.config.floatX))

        print "epoch = %d, mean_time = %.2f, loss = %.4f, train_error = %.4f, valid_error = %.4f, learning rate = %.4f" % (
            epoch, mean_epoch_time, loss, train_error, valid_error,
            model.trainer.learning_rate.get_value())
        print "best validation error %.4f" % (best_valid_error)
        if channel != None:
            state.epoch = epoch
            state.epochtime = mean_epoch_time
            state.loss = loss
            state.trainerror = best_train_error
            state.validerror = best_valid_error

            channel.save()
Exemple #4
0
    binary.printBinary()


##############################################
#                                            #
#             Machine Learning               #
#                                            #
##############################################

# Select machine learning algorithm
if(config.get('Classifier','Algorithm') == 'SVM'):
    ml1 = ml.Svm(goodware+malware)
elif(config.get('Classifier','Algorithm') == 'RandomForest'):
    ml1 = ml.RandomForest(goodware+malware)
elif(config.get('Classifier','Algorithm') == 'MLP'):
    ml1 = ml.MLP(goodware+malware)
else:
    print('Error: Invalid ml algorithm at classifier.conf.')
    exit(0)

#This can go into validation mode only. Futurely.
# ml1.createKFold()

if(config.get('Classifier','Mode') == 'Validation'):
    if(config.get('Classifier','Run') == 'Single'):
        ml1.singleRun()
    elif(config.get('Classifier','Run') == 'Multiple'):
        ml1.multipleRun()
elif(config.get('Classifier','Mode') == 'Testing'):
    ml1.trainingTesting(goodware,malware,suspicious)
Exemple #5
0
def run_nnet(clip_ids, features_dir, scores_out_dir, params_dir, **kwargs):

    file_dir = None
    learning_rate = 0.001
    no_final_dropout = False
    hidden_dropout = .5
    center_grads = False
    layer_dropout = False
    rmsprop = True
    ratio = 1.0
    train_epochs = 240
    K = 1
    state = None
    channel = None
    n_hiddens = 310
    use_nesterov = 1
    learning_rate = 0.000502311626412
    momentum = 0.459258503786
    features = "full.pca"
    example_dropout = 98
    rbm_epochs = 15
    topN_pooling = 1
    mean_pooling = 0
    rbm_batch_size = 60
    normalize_acts = False
    enable_standardization = 0
    loss_based_pooling = False
    response_normalize = False
    rmsprop = 1
    layer_dropout = True
    no_final_dropout = 0
    l2 = 1e-05
    hidden_dropout = 0.121193556495
    max_col_norm = 1.2875
    n_layers = 2
    rho = 0.92

    print "Loading dataset..."
    LABELS = [
        "Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"
    ]
    nclasses = len(LABELS)

    numpy.random.seed(0x7265257d5f)
    final_audio_path = "/data/lisa/exp/faces/emotiw_final/caglar_audio/"

    test_files = glob.glob("%s/*.pkl" % features_dir)
    test_x = []
    test_y = []
    test_filenames = []

    print "Loading test set..."
    for clip_id in clip_ids:
        test_file = "%s/%s.%s.pkl" % (features_dir, clip_id, features)
        feat = numpy.load(test_file)
        test_filenames.append(test_file.replace("pkl", "npy"))
        test_x.append(numpy.asarray(feat, theano.config.floatX))

    test_file_h = open("test_file.txt", "w")
    test_file_h.writelines(["%s\n" % item for item in test_filenames])

    test_means = numpy.load(os.path.join(final_audio_path, "test_means.npy"))
    test_means = numpy.cast[theano.config.floatX](test_means)

    print "Building model..."

    layers = (n_layers - 1) * [('R', n_hiddens)] + [('L', n_hiddens)
                                                    ] + [('S', nclasses)]

    model = ml.MLP(n_in=test_x[0].shape[1],
                   layers=layers,
                   learning_rate=learning_rate,
                   l2=l2,
                   rho=rho,
                   rmsprop=rmsprop,
                   response_normalize=response_normalize,
                   center_grads=center_grads,
                   max_col_norm=max_col_norm,
                   loss_based_pooling=loss_based_pooling,
                   hidden_dropout=hidden_dropout,
                   layer_dropout=layer_dropout,
                   use_nesterov=use_nesterov,
                   normalize_acts=normalize_acts,
                   topN_pooling=topN_pooling,
                   mean_pooling=mean_pooling,
                   no_final_dropout=no_final_dropout,
                   enable_standardization=enable_standardization,
                   momentum=momentum,
                   base_path=params_dir)

    model.load()
    train_error = 0.

    test_feats = []
    test_preds = []

    #Testing the means
    for minibatch in range(len(test_x)):
        x = test_x[minibatch] - test_means
        test_feats.append(model.pooled_output_features(x))
        test_preds.append(model.compute_preds(x))

    test_feats = numpy.asarray(test_feats, dtype="float32")
    test_feats_dir = os.path.join(scores_out_dir, "audio_mlp_test_feats.npy")
    test_preds_dir = os.path.join(
        scores_out_dir,
        "audio_mlp_learned_on_train_predict_on_test_scores.npy")
    test_preds = numpy.asarray(test_preds).flatten().reshape(-1,
                                                             7)[:, (6, 0, 1, 2,
                                                                    4, 5, 3)]

    numpy.save(test_feats_dir, test_feats)
    numpy.save(test_preds_dir, test_preds)
    # Also save as .txt for the SVM prediction
    test_preds_txt = open(
        os.path.join(scores_out_dir,
                     "audio_mlp_learned_on_train_predict_on_test_scores.txt"),
        'w')
    for item, pred in zip(clip_ids, test_preds):
        label = LABELS[pred.argmax()]
        print >> test_preds_txt, item, label, ('%f ' * 7) % tuple(
            [p for p in pred])
    test_preds_txt.close()