# # # X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) # # 5 # lr = LogisticRegression(C=100.0, random_state=1, solver='lbfgs', multi_class='auto') lr.fit(X_train_std, y_train) plot_decision_regions(X_combined_std, y_combined, classifier=lr, test_idx=range(105, 150)) plt.xlabel('petal length [standardized]') plt.ylabel('petal width [standardized]') plt.legend(loc='upper left') plt.tight_layout() img = BytesIO() plt.savefig(img, dpi=300) plt.close() img.seek(0) ml03_plot_url5 = b64encode(img.getvalue()).decode('ascii')
plt.close() img.seek(0) ml03_plot_url12 = b64encode(img.getvalue()).decode('ascii') # # 13 # tree = DecisionTreeClassifier(criterion='gini', max_depth=4, random_state=1) tree.fit(X_train, y_train) X_combined = np.vstack((X_train, X_test)) y_combined = np.hstack((y_train, y_test)) plot_decision_regions(X_combined, y_combined, classifier=tree, test_idx=range(105, 150)) plt.xlabel('petal length [cm]') plt.ylabel('petal width [cm]') plt.legend(loc='upper left') plt.tight_layout() img = BytesIO() plt.savefig(img, dpi=300) plt.close() img.seek(0) ml03_plot_url13 = b64encode(img.getvalue()).decode('ascii') #
img.seek(0) ml03_plot_url3 = b64encode(img.getvalue()).decode('ascii') # # 4 # X_train_01_subset = X_train[(y_train == 0) | (y_train == 1)] y_train_01_subset = y_train[(y_train == 0) | (y_train == 1)] lrgd = LogisticRegressionGD(eta=0.05, max_iter=1000, random_state=1) lrgd.fit(X_train_01_subset, y_train_01_subset) plot_decision_regions(X=X_train_01_subset, y=y_train_01_subset, classifier=lrgd) plt.xlabel('petal length [standardized]') plt.ylabel('petal width [standardized]') plt.legend(loc='upper left') plt.tight_layout() img = BytesIO() plt.savefig(img, dpi=300) plt.close() img.seek(0) ml03_plot_url4 = b64encode(img.getvalue()).decode('ascii')
ml03_plot_url3 = b64encode(img.getvalue()).decode('ascii') # # 4 # X_train_01_subset = X_train[(y_train == 0) | (y_train == 1)] y_train_01_subset = y_train[(y_train == 0) | (y_train == 1)] lrgd = LogisticRegressionGD(eta=0.05, max_iter=1000, random_state=1) lrgd.fit(X_train_01_subset, y_train_01_subset) plot_decision_regions(X=X_train_01_subset, y=y_train_01_subset, classifier=lrgd) plt.xlabel('petal length [standardized]') plt.ylabel('petal width [standardized]') plt.legend(loc='upper left') plt.tight_layout() img = BytesIO() plt.savefig(img, dpi=300) plt.close() img.seek(0) ml03_plot_url4 = b64encode(img.getvalue()).decode('ascii')