def _create_sampled_policy( self, encoded: "GaussianDistribution.MuSigmaTensors") -> tf.Tensor: epsilon = tf.random_normal(tf.shape(encoded.mu)) sampled_policy = encoded.mu + encoded.sigma * epsilon return sampled_policy
def _create_cc_actor( self, encoded: tf.Tensor, tanh_squash: bool = False, reparameterize: bool = False, condition_sigma_on_obs: bool = True, ) -> None: """ Creates Continuous control actor-critic model. :param h_size: Size of hidden linear layers. :param num_layers: Number of hidden linear layers. :param vis_encode_type: Type of visual encoder to use if visual input. :param tanh_squash: Whether to use a tanh function, or a clipped output. :param reparameterize: Whether we are using the resampling trick to update the policy. """ if self.use_recurrent: self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in") hidden_policy, memory_policy_out = ModelUtils.create_recurrent_encoder( encoded, self.memory_in, self.sequence_length_ph, name="lstm_policy") self.memory_out = tf.identity(memory_policy_out, name="recurrent_out") else: hidden_policy = encoded with tf.variable_scope("policy"): mu = tf.layers.dense( hidden_policy, self.act_size[0], activation=None, name="mu", kernel_initializer=ModelUtils.scaled_init(0.01), reuse=tf.AUTO_REUSE, ) # Policy-dependent log_sigma if condition_sigma_on_obs: log_sigma = tf.layers.dense( hidden_policy, self.act_size[0], activation=None, name="log_sigma", kernel_initializer=ModelUtils.scaled_init(0.01), ) else: log_sigma = tf.get_variable( "log_sigma", [self.act_size[0]], dtype=tf.float32, initializer=tf.zeros_initializer(), ) log_sigma = tf.clip_by_value(log_sigma, self.log_std_min, self.log_std_max) sigma = tf.exp(log_sigma) epsilon = tf.random_normal(tf.shape(mu)) sampled_policy = mu + sigma * epsilon # Stop gradient if we're not doing the resampling trick if not reparameterize: sampled_policy_probs = tf.stop_gradient(sampled_policy) else: sampled_policy_probs = sampled_policy # Compute probability of model output. _gauss_pre = -0.5 * ( ((sampled_policy_probs - mu) / (sigma + EPSILON))**2 + 2 * log_sigma + np.log(2 * np.pi)) all_probs = _gauss_pre all_probs = tf.reduce_sum(_gauss_pre, axis=1, keepdims=True) if tanh_squash: self.output_pre = tf.tanh(sampled_policy) # Squash correction all_probs -= tf.reduce_sum(tf.log(1 - self.output_pre**2 + EPSILON), axis=1, keepdims=True) self.output = tf.identity(self.output_pre, name="action") else: self.output_pre = sampled_policy # Clip and scale output to ensure actions are always within [-1, 1] range. output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3 self.output = tf.identity(output_post, name="action") self.selected_actions = tf.stop_gradient(self.output) self.all_log_probs = tf.identity(all_probs, name="action_probs") single_dim_entropy = 0.5 * tf.reduce_mean( tf.log(2 * np.pi * np.e) + 2 * log_sigma) # Make entropy the right shape self.entropy = tf.ones_like(tf.reshape(mu[:, 0], [-1])) * single_dim_entropy # We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control. self.log_probs = tf.reduce_sum((tf.identity(self.all_log_probs)), axis=1, keepdims=True) self.action_holder = tf.placeholder(shape=[None, self.act_size[0]], dtype=tf.float32, name="action_holder")
def create_encoder(self, state_in: tf.Tensor, action_in: tf.Tensor, done_in: tf.Tensor, reuse: bool) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: """ Creates the encoder for the discriminator :param state_in: The encoded observation input :param action_in: The action input :param done_in: The done flags input :param reuse: If true, the weights will be shared with the previous encoder created """ with tf.variable_scope("GAIL_model"): if self.use_actions: concat_input = tf.concat([state_in, action_in, done_in], axis=1) else: concat_input = state_in hidden_1 = tf.layers.dense( concat_input, self.h_size, activation=ModelUtils.swish, name="gail_d_hidden_1", reuse=reuse, ) hidden_2 = tf.layers.dense( hidden_1, self.h_size, activation=ModelUtils.swish, name="gail_d_hidden_2", reuse=reuse, ) z_mean = None if self.use_vail: # Latent representation z_mean = tf.layers.dense( hidden_2, self.z_size, reuse=reuse, name="gail_z_mean", kernel_initializer=ModelUtils.scaled_init(0.01), ) self.noise = tf.random_normal(tf.shape(z_mean), dtype=tf.float32) # Sampled latent code self.z = z_mean + self.z_sigma * self.noise * self.use_noise estimate_input = self.z else: estimate_input = hidden_2 estimate = tf.layers.dense( estimate_input, 1, activation=tf.nn.sigmoid, name="gail_d_estimate", reuse=reuse, ) return estimate, z_mean, concat_input
def create_cc_actor(self, hidden_policy, scope): """ Creates Continuous control actor for SAC. :param hidden_policy: Output of feature extractor (i.e. the input for vector obs, output of CNN for visual obs). :param num_layers: TF scope to assign whatever is created in this block. """ # Create action input (continuous) self.action_holder = tf.placeholder(shape=[None, self.act_size[0]], dtype=tf.float32, name="action_holder") self.external_action_in = self.action_holder scope = self.join_scopes(scope, "policy") with tf.variable_scope(scope): hidden_policy = self.create_vector_observation_encoder( hidden_policy, self.h_size, self.activ_fn, self.num_layers, "encoder", False, ) if self.use_recurrent: hidden_policy, memory_out = self.create_recurrent_encoder( hidden_policy, self.policy_memory_in, self.sequence_length, name="lstm_policy", ) self.policy_memory_out = memory_out with tf.variable_scope(scope): mu = tf.layers.dense( hidden_policy, self.act_size[0], activation=None, name="mu", kernel_initializer=LearningModel.scaled_init(0.01), ) # Policy-dependent log_sigma_sq log_sigma_sq = tf.layers.dense( hidden_policy, self.act_size[0], activation=None, name="log_std", kernel_initializer=LearningModel.scaled_init(0.01), ) self.log_sigma_sq = tf.clip_by_value(log_sigma_sq, LOG_STD_MIN, LOG_STD_MAX) sigma_sq = tf.exp(self.log_sigma_sq) # Do the reparameterization trick policy_ = mu + tf.random_normal(tf.shape(mu)) * sigma_sq _gauss_pre = -0.5 * (((policy_ - mu) / (tf.exp(self.log_sigma_sq) + EPSILON))**2 + 2 * self.log_sigma_sq + np.log(2 * np.pi)) all_probs = tf.reduce_sum(_gauss_pre, axis=1, keepdims=True) self.entropy = tf.reduce_sum(self.log_sigma_sq + 0.5 * np.log(2.0 * np.pi * np.e), axis=-1) # Squash probabilities # Keep deterministic around in case we want to use it. self.deterministic_output = tf.tanh(mu) # Note that this is just for symmetry with PPO. self.output_pre = tf.tanh(policy_) # Squash correction all_probs -= tf.reduce_sum(tf.log(1 - self.output_pre**2 + EPSILON), axis=1, keepdims=True) self.all_log_probs = all_probs self.selected_actions = tf.stop_gradient(self.output_pre) self.action_probs = all_probs # Extract output for Barracuda self.output = tf.identity(self.output_pre, name="action") # Get all policy vars self.policy_vars = self.get_vars(scope)