Exemple #1
0
    def sac_value_loss(
        self,
        log_probs: torch.Tensor,
        values: Dict[str, torch.Tensor],
        q1p_out: Dict[str, torch.Tensor],
        q2p_out: Dict[str, torch.Tensor],
        loss_masks: torch.Tensor,
        discrete: bool,
    ) -> torch.Tensor:
        min_policy_qs = {}
        with torch.no_grad():
            _ent_coef = torch.exp(self._log_ent_coef)
            for name in values.keys():
                if not discrete:
                    min_policy_qs[name] = torch.min(q1p_out[name], q2p_out[name])
                else:
                    action_probs = log_probs.exp()
                    _branched_q1p = ModelUtils.break_into_branches(
                        q1p_out[name] * action_probs, self.act_size
                    )
                    _branched_q2p = ModelUtils.break_into_branches(
                        q2p_out[name] * action_probs, self.act_size
                    )
                    _q1p_mean = torch.mean(
                        torch.stack(
                            [
                                torch.sum(_br, dim=1, keepdim=True)
                                for _br in _branched_q1p
                            ]
                        ),
                        dim=0,
                    )
                    _q2p_mean = torch.mean(
                        torch.stack(
                            [
                                torch.sum(_br, dim=1, keepdim=True)
                                for _br in _branched_q2p
                            ]
                        ),
                        dim=0,
                    )

                    min_policy_qs[name] = torch.min(_q1p_mean, _q2p_mean)

        value_losses = []
        if not discrete:
            for name in values.keys():
                with torch.no_grad():
                    v_backup = min_policy_qs[name] - torch.sum(
                        _ent_coef * log_probs, dim=1
                    )
                value_loss = 0.5 * ModelUtils.masked_mean(
                    torch.nn.functional.mse_loss(values[name], v_backup), loss_masks
                )
                value_losses.append(value_loss)
        else:
            branched_per_action_ent = ModelUtils.break_into_branches(
                log_probs * log_probs.exp(), self.act_size
            )
            # We have to do entropy bonus per action branch
            branched_ent_bonus = torch.stack(
                [
                    torch.sum(_ent_coef[i] * _lp, dim=1, keepdim=True)
                    for i, _lp in enumerate(branched_per_action_ent)
                ]
            )
            for name in values.keys():
                with torch.no_grad():
                    v_backup = min_policy_qs[name] - torch.mean(
                        branched_ent_bonus, axis=0
                    )
                value_loss = 0.5 * ModelUtils.masked_mean(
                    torch.nn.functional.mse_loss(values[name], v_backup.squeeze()),
                    loss_masks,
                )
                value_losses.append(value_loss)
        value_loss = torch.mean(torch.stack(value_losses))
        if torch.isinf(value_loss).any() or torch.isnan(value_loss).any():
            raise UnityTrainerException("Inf found")
        return value_loss
Exemple #2
0
def initialize_trainer(
    trainer_config: Any,
    brain_name: str,
    run_id: str,
    output_path: str,
    keep_checkpoints: int,
    train_model: bool,
    load_model: bool,
    ghost_controller: GhostController,
    seed: int,
    init_path: str = None,
    meta_curriculum: MetaCurriculum = None,
    multi_gpu: bool = False,
) -> Trainer:
    """
    Initializes a trainer given a provided trainer configuration and brain parameters, as well as
    some general training session options.

    :param trainer_config: Original trainer configuration loaded from YAML
    :param brain_name: Name of the brain to be associated with trainer
    :param run_id: Run ID to associate with this training run
    :param output_path: Path to save the model and summary statistics
    :param keep_checkpoints: How many model checkpoints to keep
    :param train_model: Whether to train the model (vs. run inference)
    :param load_model: Whether to load the model or randomly initialize
    :param ghost_controller: The object that coordinates ghost trainers
    :param seed: The random seed to use
    :param init_path: Path from which to load model, if different from model_path.
    :param meta_curriculum: Optional meta_curriculum, used to determine a reward buffer length for PPOTrainer
    :return:
    """
    if "default" not in trainer_config and brain_name not in trainer_config:
        raise TrainerConfigError(
            f'Trainer config must have either a "default" section, or a section for the brain name {brain_name}. '
            "See the config/ directory for examples.")

    trainer_parameters = trainer_config.get("default", {}).copy()
    trainer_parameters["output_path"] = os.path.join(output_path, brain_name)
    if init_path is not None:
        trainer_parameters["init_path"] = os.path.join(init_path, brain_name)
    trainer_parameters["keep_checkpoints"] = keep_checkpoints
    if brain_name in trainer_config:
        _brain_key: Any = brain_name
        while not isinstance(trainer_config[_brain_key], dict):
            _brain_key = trainer_config[_brain_key]
        trainer_parameters.update(trainer_config[_brain_key])

    if init_path is not None:
        trainer_parameters["init_path"] = "{basedir}/{name}".format(
            basedir=init_path, name=brain_name)

    min_lesson_length = 1
    if meta_curriculum:
        if brain_name in meta_curriculum.brains_to_curricula:
            min_lesson_length = meta_curriculum.brains_to_curricula[
                brain_name].min_lesson_length
        else:
            logger.warning(
                f"Metacurriculum enabled, but no curriculum for brain {brain_name}. "
                f"Brains with curricula: {meta_curriculum.brains_to_curricula.keys()}. "
            )

    trainer: Trainer = None  # type: ignore  # will be set to one of these, or raise
    if "trainer" not in trainer_parameters:
        raise TrainerConfigError(
            f'The "trainer" key must be set in your trainer config for brain {brain_name} (or the default brain).'
        )
    trainer_type = trainer_parameters["trainer"]

    if trainer_type == "offline_bc":
        raise UnityTrainerException(
            "The offline_bc trainer has been removed. To train with demonstrations, "
            "please use a PPO or SAC trainer with the GAIL Reward Signal and/or the "
            "Behavioral Cloning feature enabled.")
    elif trainer_type == "ppo":
        trainer = PPOTrainer(
            brain_name,
            min_lesson_length,
            trainer_parameters,
            train_model,
            load_model,
            seed,
            run_id,
        )
    elif trainer_type == "sac":
        trainer = SACTrainer(
            brain_name,
            min_lesson_length,
            trainer_parameters,
            train_model,
            load_model,
            seed,
            run_id,
        )

    else:
        raise TrainerConfigError(
            f'The trainer config contains an unknown trainer type "{trainer_type}" for brain {brain_name}'
        )

    if "self_play" in trainer_parameters:
        trainer = GhostTrainer(
            trainer,
            brain_name,
            ghost_controller,
            min_lesson_length,
            trainer_parameters,
            train_model,
            run_id,
        )
    return trainer
Exemple #3
0
    def sac_value_loss(
        self,
        log_probs: ActionLogProbs,
        values: Dict[str, torch.Tensor],
        q1p_out: Dict[str, torch.Tensor],
        q2p_out: Dict[str, torch.Tensor],
        loss_masks: torch.Tensor,
    ) -> torch.Tensor:
        min_policy_qs = {}
        with torch.no_grad():
            _cont_ent_coef = self._log_ent_coef.continuous.exp()
            _disc_ent_coef = self._log_ent_coef.discrete.exp()
            for name in values.keys():
                if self._action_spec.discrete_size <= 0:
                    min_policy_qs[name] = torch.min(q1p_out[name],
                                                    q2p_out[name])
                else:
                    disc_action_probs = log_probs.all_discrete_tensor.exp()
                    _branched_q1p = ModelUtils.break_into_branches(
                        q1p_out[name] * disc_action_probs,
                        self._action_spec.discrete_branches,
                    )
                    _branched_q2p = ModelUtils.break_into_branches(
                        q2p_out[name] * disc_action_probs,
                        self._action_spec.discrete_branches,
                    )
                    _q1p_mean = torch.mean(
                        torch.stack([
                            torch.sum(_br, dim=1, keepdim=True)
                            for _br in _branched_q1p
                        ]),
                        dim=0,
                    )
                    _q2p_mean = torch.mean(
                        torch.stack([
                            torch.sum(_br, dim=1, keepdim=True)
                            for _br in _branched_q2p
                        ]),
                        dim=0,
                    )

                    min_policy_qs[name] = torch.min(_q1p_mean, _q2p_mean)

        value_losses = []
        if self._action_spec.discrete_size <= 0:
            for name in values.keys():
                with torch.no_grad():
                    v_backup = min_policy_qs[name] - torch.sum(
                        _cont_ent_coef * log_probs.continuous_tensor, dim=1)
                value_loss = 0.5 * ModelUtils.masked_mean(
                    torch.nn.functional.mse_loss(values[name], v_backup),
                    loss_masks)
                value_losses.append(value_loss)
        else:
            disc_log_probs = log_probs.all_discrete_tensor
            branched_per_action_ent = ModelUtils.break_into_branches(
                disc_log_probs * disc_log_probs.exp(),
                self._action_spec.discrete_branches,
            )
            # We have to do entropy bonus per action branch
            branched_ent_bonus = torch.stack([
                torch.sum(_disc_ent_coef[i] * _lp, dim=1, keepdim=True)
                for i, _lp in enumerate(branched_per_action_ent)
            ])
            for name in values.keys():
                with torch.no_grad():
                    v_backup = min_policy_qs[name] - torch.mean(
                        branched_ent_bonus, axis=0)
                    # Add continuous entropy bonus to minimum Q
                    if self._action_spec.continuous_size > 0:
                        v_backup += torch.sum(
                            _cont_ent_coef * log_probs.continuous_tensor,
                            dim=1,
                            keepdim=True,
                        )
                value_loss = 0.5 * ModelUtils.masked_mean(
                    torch.nn.functional.mse_loss(values[name],
                                                 v_backup.squeeze()),
                    loss_masks,
                )
                value_losses.append(value_loss)
        value_loss = torch.mean(torch.stack(value_losses))
        if torch.isinf(value_loss).any() or torch.isnan(value_loss).any():
            raise UnityTrainerException("Inf found")
        return value_loss
Exemple #4
0
 def _check_param_keys(self):
     for k in self.param_keys:
         if k not in self.trainer_parameters:
             raise UnityTrainerException(
                 "The hyper-parameter {0} could not be found for the {1} trainer of "
                 "brain {2}.".format(k, self.__class__, self.brain_name))
Exemple #5
0
    def __init__(self, policy: TorchPolicy, trainer_params: TrainerSettings):
        super().__init__(policy, trainer_params)
        reward_signal_configs = trainer_params.reward_signals
        reward_signal_names = [
            key.value for key, _ in reward_signal_configs.items()
        ]
        if policy.shared_critic:
            raise UnityTrainerException(
                "SAC does not support SharedActorCritic")
        self._critic = ValueNetwork(
            reward_signal_names,
            policy.behavior_spec.observation_specs,
            policy.network_settings,
        )

        hyperparameters: SACSettings = cast(SACSettings,
                                            trainer_params.hyperparameters)
        self.tau = hyperparameters.tau
        self.init_entcoef = hyperparameters.init_entcoef

        self.policy = policy
        policy_network_settings = policy.network_settings

        self.tau = hyperparameters.tau
        self.burn_in_ratio = 0.0

        # Non-exposed SAC parameters
        self.discrete_target_entropy_scale = 0.2  # Roughly equal to e-greedy 0.05
        self.continuous_target_entropy_scale = 1.0

        self.stream_names = list(self.reward_signals.keys())
        # Use to reduce "survivor bonus" when using Curiosity or GAIL.
        self.gammas = [
            _val.gamma for _val in trainer_params.reward_signals.values()
        ]
        self.use_dones_in_backup = {
            name: int(not self.reward_signals[name].ignore_done)
            for name in self.stream_names
        }
        self._action_spec = self.policy.behavior_spec.action_spec

        self.q_network = TorchSACOptimizer.PolicyValueNetwork(
            self.stream_names,
            self.policy.behavior_spec.observation_specs,
            policy_network_settings,
            self._action_spec,
        )

        self.target_network = ValueNetwork(
            self.stream_names,
            self.policy.behavior_spec.observation_specs,
            policy_network_settings,
        )
        ModelUtils.soft_update(self._critic, self.target_network, 1.0)

        # We create one entropy coefficient per action, whether discrete or continuous.
        _disc_log_ent_coef = torch.nn.Parameter(
            torch.log(
                torch.as_tensor([self.init_entcoef] *
                                len(self._action_spec.discrete_branches))),
            requires_grad=True,
        )
        _cont_log_ent_coef = torch.nn.Parameter(torch.log(
            torch.as_tensor([self.init_entcoef])),
                                                requires_grad=True)
        self._log_ent_coef = TorchSACOptimizer.LogEntCoef(
            discrete=_disc_log_ent_coef, continuous=_cont_log_ent_coef)
        _cont_target = (
            -1 * self.continuous_target_entropy_scale *
            np.prod(self._action_spec.continuous_size).astype(np.float32))
        _disc_target = [
            self.discrete_target_entropy_scale * np.log(i).astype(np.float32)
            for i in self._action_spec.discrete_branches
        ]
        self.target_entropy = TorchSACOptimizer.TargetEntropy(
            continuous=_cont_target, discrete=_disc_target)
        policy_params = list(self.policy.actor.parameters())
        value_params = list(self.q_network.parameters()) + list(
            self._critic.parameters())

        logger.debug("value_vars")
        for param in value_params:
            logger.debug(param.shape)
        logger.debug("policy_vars")
        for param in policy_params:
            logger.debug(param.shape)

        self.decay_learning_rate = ModelUtils.DecayedValue(
            hyperparameters.learning_rate_schedule,
            hyperparameters.learning_rate,
            1e-10,
            self.trainer_settings.max_steps,
        )
        self.policy_optimizer = torch.optim.Adam(
            policy_params, lr=hyperparameters.learning_rate)
        self.value_optimizer = torch.optim.Adam(
            value_params, lr=hyperparameters.learning_rate)
        self.entropy_optimizer = torch.optim.Adam(
            self._log_ent_coef.parameters(), lr=hyperparameters.learning_rate)
        self._move_to_device(default_device())