def test_publish_queue(dummy_config): brain_params_team0 = BrainParameters( brain_name="test_brain?team=0", vector_observation_space_size=8, camera_resolutions=[], vector_action_space_size=[1], vector_action_descriptions=[], vector_action_space_type=0, ) parsed_behavior_id0 = BehaviorIdentifiers.from_name_behavior_id( brain_params_team0.brain_name) brain_name = parsed_behavior_id0.brain_name brain_params_team1 = BrainParameters( brain_name="test_brain?team=1", vector_observation_space_size=8, camera_resolutions=[], vector_action_space_size=[1], vector_action_descriptions=[], vector_action_space_type=0, ) ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0") controller = GhostController(100) trainer = GhostTrainer(ppo_trainer, brain_name, controller, 0, dummy_config, True, "0") # First policy encountered becomes policy trained by wrapped PPO # This queue should remain empty after swap snapshot policy = trainer.create_policy(parsed_behavior_id0, brain_params_team0) trainer.add_policy(parsed_behavior_id0, policy) policy_queue0 = AgentManagerQueue(brain_params_team0.brain_name) trainer.publish_policy_queue(policy_queue0) # Ghost trainer should use this queue for ghost policy swap parsed_behavior_id1 = BehaviorIdentifiers.from_name_behavior_id( brain_params_team1.brain_name) policy = trainer.create_policy(parsed_behavior_id1, brain_params_team1) trainer.add_policy(parsed_behavior_id1, policy) policy_queue1 = AgentManagerQueue(brain_params_team1.brain_name) trainer.publish_policy_queue(policy_queue1) # check ghost trainer swap pushes to ghost queue and not trainer assert policy_queue0.empty() and policy_queue1.empty() trainer._swap_snapshots() assert policy_queue0.empty() and not policy_queue1.empty() # clear policy_queue1.get_nowait() mock_brain = mb.setup_mock_brain( False, False, vector_action_space=VECTOR_ACTION_SPACE, vector_obs_space=VECTOR_OBS_SPACE, discrete_action_space=DISCRETE_ACTION_SPACE, ) buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, mock_brain) # Mock out reward signal eval buffer["extrinsic_rewards"] = buffer["environment_rewards"] buffer["extrinsic_returns"] = buffer["environment_rewards"] buffer["extrinsic_value_estimates"] = buffer["environment_rewards"] buffer["curiosity_rewards"] = buffer["environment_rewards"] buffer["curiosity_returns"] = buffer["environment_rewards"] buffer["curiosity_value_estimates"] = buffer["environment_rewards"] buffer["advantages"] = buffer["environment_rewards"] trainer.trainer.update_buffer = buffer # when ghost trainer advance and wrapped trainer buffers full # the wrapped trainer pushes updated policy to correct queue assert policy_queue0.empty() and policy_queue1.empty() trainer.advance() assert not policy_queue0.empty() and policy_queue1.empty()
def test_process_trajectory(dummy_config): brain_params_team0 = BrainParameters( brain_name="test_brain?team=0", vector_observation_space_size=1, camera_resolutions=[], vector_action_space_size=[2], vector_action_descriptions=[], vector_action_space_type=0, ) brain_name = BehaviorIdentifiers.from_name_behavior_id( brain_params_team0.brain_name).brain_name brain_params_team1 = BrainParameters( brain_name="test_brain?team=1", vector_observation_space_size=1, camera_resolutions=[], vector_action_space_size=[2], vector_action_descriptions=[], vector_action_space_type=0, ) ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0") controller = GhostController(100) trainer = GhostTrainer(ppo_trainer, brain_name, controller, 0, dummy_config, True, "0") # first policy encountered becomes policy trained by wrapped PPO parsed_behavior_id0 = BehaviorIdentifiers.from_name_behavior_id( brain_params_team0.brain_name) policy = trainer.create_policy(parsed_behavior_id0, brain_params_team0) trainer.add_policy(parsed_behavior_id0, policy) trajectory_queue0 = AgentManagerQueue(brain_params_team0.brain_name) trainer.subscribe_trajectory_queue(trajectory_queue0) # Ghost trainer should ignore this queue because off policy parsed_behavior_id1 = BehaviorIdentifiers.from_name_behavior_id( brain_params_team1.brain_name) policy = trainer.create_policy(parsed_behavior_id1, brain_params_team1) trainer.add_policy(parsed_behavior_id1, policy) trajectory_queue1 = AgentManagerQueue(brain_params_team1.brain_name) trainer.subscribe_trajectory_queue(trajectory_queue1) time_horizon = 15 trajectory = make_fake_trajectory( length=time_horizon, max_step_complete=True, vec_obs_size=1, num_vis_obs=0, action_space=[2], ) trajectory_queue0.put(trajectory) trainer.advance() # Check that trainer put trajectory in update buffer assert trainer.trainer.update_buffer.num_experiences == 15 trajectory_queue1.put(trajectory) trainer.advance() # Check that ghost trainer ignored off policy queue assert trainer.trainer.update_buffer.num_experiences == 15 # Check that it emptied the queue assert trajectory_queue1.empty()
def test_publish_queue(dummy_config): mock_specs = mb.setup_test_behavior_specs(True, False, vector_action_space=[1], vector_obs_space=8) behavior_id_team0 = "test_brain?team=0" behavior_id_team1 = "test_brain?team=1" parsed_behavior_id0 = BehaviorIdentifiers.from_name_behavior_id( behavior_id_team0) brain_name = parsed_behavior_id0.brain_name ppo_trainer = PPOTrainer(brain_name, 0, dummy_config, True, False, 0, "0") controller = GhostController(100) trainer = GhostTrainer(ppo_trainer, brain_name, controller, 0, dummy_config, True, "0") # First policy encountered becomes policy trained by wrapped PPO # This queue should remain empty after swap snapshot policy = trainer.create_policy(parsed_behavior_id0, mock_specs) trainer.add_policy(parsed_behavior_id0, policy) policy_queue0 = AgentManagerQueue(behavior_id_team0) trainer.publish_policy_queue(policy_queue0) # Ghost trainer should use this queue for ghost policy swap parsed_behavior_id1 = BehaviorIdentifiers.from_name_behavior_id( behavior_id_team1) policy = trainer.create_policy(parsed_behavior_id1, mock_specs) trainer.add_policy(parsed_behavior_id1, policy) policy_queue1 = AgentManagerQueue(behavior_id_team1) trainer.publish_policy_queue(policy_queue1) # check ghost trainer swap pushes to ghost queue and not trainer assert policy_queue0.empty() and policy_queue1.empty() trainer._swap_snapshots() assert policy_queue0.empty() and not policy_queue1.empty() # clear policy_queue1.get_nowait() buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, mock_specs) # Mock out reward signal eval copy_buffer_fields( buffer, src_key=BufferKey.ENVIRONMENT_REWARDS, dst_keys=[ BufferKey.ADVANTAGES, RewardSignalUtil.rewards_key("extrinsic"), RewardSignalUtil.returns_key("extrinsic"), RewardSignalUtil.value_estimates_key("extrinsic"), RewardSignalUtil.rewards_key("curiosity"), RewardSignalUtil.returns_key("curiosity"), RewardSignalUtil.value_estimates_key("curiosity"), ], ) trainer.trainer.update_buffer = buffer # when ghost trainer advance and wrapped trainer buffers full # the wrapped trainer pushes updated policy to correct queue assert policy_queue0.empty() and policy_queue1.empty() trainer.advance() assert not policy_queue0.empty() and policy_queue1.empty()