def _test_dedupe_column_names(tmpdir, input_column_names: List[str], input_data: List[int], expected_column_names: List[str], expected_data: List[int], dedupe_column_names: bool = True, **kwargs) -> None: header_str = ','.join(input_column_names) data_str = ','.join(str(x) for x in input_data) csv_file = tmpdir.join("test.csv") csv_file.write(header_str + '\n' + data_str) dataset = [mlio.File(str(csv_file))] reader_params = mlio.DataReaderParams(dataset=dataset, batch_size=1) csv_params = mlio.CsvParams(dedupe_column_names=dedupe_column_names, **kwargs) reader = mlio.CsvReader(reader_params, csv_params) example = reader.read_example() names = [desc.name for desc in example.schema.descriptors] assert names == expected_column_names record = [as_numpy(feature) for feature in example] assert np.all(np.array(record).squeeze() == np.array(expected_data))
def _get_reader(source, batch_size): """Returns 'CsvReader' for the given source Parameters ---------- source: str or bytes Name of the SageMaker Channel, File, or directory from which the data is being read or the Python buffer object from which the data is being read. batch_size : int The batch size in rows to read from the source. Returns ------- mlio.CsvReader CsvReader configured with a SageMaker Pipe, File or InMemory buffer """ data_reader_params = mlio.DataReaderParams(dataset=_get_data(source), batch_size=batch_size, warn_bad_instances=False) csv_params = mlio.CsvParams(default_data_type=mlio.DataType.STRING, header_row_index=None, allow_quoted_new_lines=True) return mlio.CsvReader(data_reader_params=data_reader_params, csv_params=csv_params)
def test_csv_params(): filename = os.path.join(resources_dir, 'test.csv') dataset = [mlio.File(filename)] rdr_prm = mlio.DataReaderParams(dataset=dataset, batch_size=1) csv_prm = mlio.CsvParams(header_row_index=None) reader = mlio.CsvReader(rdr_prm, csv_prm) example = reader.read_example() record = [as_numpy(feature) for feature in example] assert np.all(np.array(record).squeeze() == np.array([1, 0, 0, 0])) reader2 = mlio.CsvReader(rdr_prm, csv_prm) assert reader2.peek_example()
def test_csv_nonutf_encoding_with_encoding_param(): filename = os.path.join(resources_dir, 'test_iso8859_5.csv') dataset = [mlio.File(filename)] rdr_prm = mlio.DataReaderParams(dataset=dataset, batch_size=2) csv_params = mlio.CsvParams(encoding='ISO-8859-5') reader = mlio.CsvReader(rdr_prm, csv_params) example = reader.read_example() nonutf_feature = example['col_3'] try: feature_np = as_numpy(nonutf_feature) except SystemError as err: pytest.fail("Unexpected exception thrown")
def _get_csv_dmatrix_pipe_mode(pipe_path, csv_weights): """Get Data Matrix from CSV data in pipe mode. :param pipe_path: SageMaker pipe path where CSV formatted training data is piped :param csv_weights: 1 if instance weights are in second column of CSV data; else 0 :return: xgb.DMatrix or None """ try: pipes_path = pipe_path if isinstance(pipe_path, list) else [pipe_path] dataset = [mlio.SageMakerPipe(path) for path in pipes_path] reader_params = mlio.DataReaderParams(dataset=dataset, batch_size=BATCH_SIZE) csv_params = mlio.CsvParams(header_row_index=None) reader = mlio.CsvReader(reader_params, csv_params) # Check if data is present in reader if reader.peek_example() is not None: examples = [] for example in reader: # Write each feature (column) of example into a single numpy array tmp = [as_numpy(feature).squeeze() for feature in example] tmp = np.array(tmp) if len(tmp.shape) > 1: # Columns are written as rows, needs to be transposed tmp = tmp.T else: # If tmp is a 1-D array, it needs to be reshaped as a matrix tmp = np.reshape(tmp, (1, tmp.shape[0])) examples.append(tmp) data = np.vstack(examples) del examples if csv_weights == 1: dmatrix = xgb.DMatrix(data[:, 2:], label=data[:, 0], weight=data[:, 1]) else: dmatrix = xgb.DMatrix(data[:, 1:], label=data[:, 0]) return dmatrix else: return None except Exception as e: raise exc.UserError( "Failed to load csv data with exception:\n{}".format(e))
def test_csv_params_members(): csv_prm = mlio.CsvParams() assert csv_prm.column_names == [] assert csv_prm.name_prefix == '' assert csv_prm.use_columns == set() assert csv_prm.use_columns_by_index == set() assert csv_prm.default_data_type is None assert csv_prm.column_types == {} assert csv_prm.column_types_by_index == {} assert csv_prm.header_row_index == 0 assert csv_prm.has_single_header is False assert csv_prm.delimiter == ',' assert csv_prm.quote_char == '"' assert csv_prm.comment_char is None assert csv_prm.allow_quoted_new_lines is False assert csv_prm.skip_blank_lines is True assert csv_prm.encoding is None assert csv_prm.max_field_length is None assert csv_prm.max_field_length_handling == \ mlio.MaxFieldLengthHandling.ERROR assert csv_prm.max_line_length is None assert csv_prm.parser_params.nan_values == set() assert csv_prm.parser_params.number_base == 10 csv_prm.header_row_index = None assert csv_prm.header_row_index is None csv_prm.parser_params.number_base = 2 assert csv_prm.parser_params.number_base == 2 '''Due to a shortcoming in pybind11, values cannot be added to container types, and updates must instead be made via assignment.''' csv_prm.column_types['foo'] = mlio.DataType.STRING # Doesn't work assert csv_prm.column_types == {} csv_prm.column_types = {'foo': mlio.DataType.STRING} # OK assert csv_prm.column_types == {'foo': mlio.DataType.STRING}