Exemple #1
0
[label]
    pad_mode = "constant"
    pad_fill = 255
    resize_mode = "nearest"
    grayscale = False
    filename = "{prefix}_{subset}-p{x_pad}x{y_pad}x{z_pad}-labeldata.idx"
    use_channel_dim = False
"""
from __future__ import division, print_function, unicode_literals

import numpy as np
from scipy.misc import imresize
import datasets.pascal as pc
from mlizard import createExperiment
from infrastructure.idxconverter import write_idx_file
ex = createExperiment(config_string=__doc__)

@ex.stage
def get_image_path_list(subset):
    return list({'train' : pc.get_seg_train_image_files,
                 'val'   : pc.get_seg_val_image_files,
                 'all'   : pc.get_seg_trainval_image_files}[subset]())

@ex.stage
def get_label_path_list(subset):
    return list({'train' : pc.get_seg_train_class_label_files,
                 'val'   : pc.get_seg_val_class_label_files,
                 'all'   : pc.get_seg_trainval_class_label_files}[subset]())

get_classes_matrix = ex.stage(pc.get_classes_matrix)
Exemple #2
0
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""
seed = 380434
ds_path = "/home/greff/Datasets/ImageNet/"
used_classes = [1, 2, 3, 4]
samples_per_class = 10
shuffle = True

"""
from __future__ import division, print_function, unicode_literals
from os.path import join
import numpy as np
from mlizard import createExperiment

ex = createExperiment("ImageNet", config_string=__doc__)

@ex.stage
def get_image_paths_and_classes(ds_path, logger):
    path = join(ds_path, "trainfiles.txt" )
    f = open(path, 'r')
    lines = f.readlines()
    lines = map(lambda s : s.split(None, 1), lines)
    paths =  np.array([join(ds_path, p) for p, c in lines])
    targets = np.array([[int(c)] for p, c in lines])
    logger.info("Opened path '%s' and got %d samples.", path, len(lines))
    return paths, targets

@ex.stage
def get_subset_indices(targets, used_classes, samples_per_class, shuffle, rnd):
    indices_for_class = []