Exemple #1
0
    def test_data_splits(self):
        bad_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_UNITTEST)

        # Test invalid splits
        bad_config.data_split = "bad"
        self.assertRaises(ValueError, KittiDataset, bad_config)

        # Should be "train"
        bad_config.data_split = "training"
        self.assertRaises(ValueError, KittiDataset, bad_config)

        # Should be "val"
        bad_config.data_split = "validation"
        self.assertRaises(ValueError, KittiDataset, bad_config)

        # Should be "test"
        bad_config.data_split = "testing"
        self.assertRaises(ValueError, KittiDataset, bad_config)

        # Train split
        train_dataset = self.get_fake_dataset('train', self.fake_kitti_dir)
        self.assertEqual(train_dataset.num_samples, 7)

        # Validation split
        validation_dataset = self.get_fake_dataset('val', self.fake_kitti_dir)
        self.assertEqual(validation_dataset.num_samples, 6)

        # Train + validation split
        trainval_dataset = self.get_fake_dataset('trainval',
                                                 self.fake_kitti_dir)
        self.assertEqual(trainval_dataset.num_samples, 13)

        # Test split
        test_dataset = self.get_fake_dataset('test', self.fake_kitti_dir)
        self.assertEqual(test_dataset.num_samples, 10)
def main():

    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_UNITTEST)
    dataset_config.data_split = "trainval"
    unittest_dataset = DatasetBuilder.build_kitti_dataset(dataset_config)

    gen_label_clusters.main(unittest_dataset)
    gen_mini_batches.main(unittest_dataset)
Exemple #3
0
    def get_fake_dataset(self, data_split, directory):
        dataset_config = DatasetBuilder.copy_config(
            DatasetBuilder.KITTI_UNITTEST)

        # Overwrite config values
        dataset_config.data_split = data_split
        dataset_config.dataset_dir = directory

        dataset = DatasetBuilder.build_kitti_dataset(dataset_config)

        return dataset
Exemple #4
0
    def test_project_to_image_space_tensors(self):

        anchors = np.asarray([[0, 0, 3, 2, 0, 6], [3, 0, 3, 2, 0, 2]],
                             dtype=np.float64)
        img_idx = int('000217')
        img_shape = [375, 1242]

        dataset_config = DatasetBuilder.copy_config(
            DatasetBuilder.KITTI_UNITTEST)

        dataset_config.data_split = 'train'
        dataset_config.dataset_dir = tests.test_path() + \
            "/datasets/Kitti/object"

        dataset = DatasetBuilder().build_kitti_dataset(dataset_config)

        stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir,
                                                       img_idx).p2

        # Project the 3D points in numpy space
        img_corners, img_corners_norm = anchor_projector.project_to_image_space(
            anchors, stereo_calib_p2, img_shape)

        # convert the required params to tensors
        tf_stereo_calib_p2 = tf.convert_to_tensor(stereo_calib_p2,
                                                  dtype=tf.float32)
        tf_anchors = tf.convert_to_tensor(anchors, dtype=tf.float32)
        tf_img_shape = tf.convert_to_tensor(img_shape, dtype=tf.float32)

        # Project the 3D points in tensor space
        img_corners_tensor, img_corners_norm_tensor = \
            anchor_projector.tf_project_to_image_space(tf_anchors,
                                                       tf_stereo_calib_p2,
                                                       tf_img_shape)

        sess = tf.Session()
        with sess.as_default():
            img_corners_out = img_corners_tensor.eval()
            img_corners_norm_out = img_corners_norm_tensor.eval()
            np.testing.assert_allclose(img_corners,
                                       img_corners_out,
                                       atol=1e-04,
                                       err_msg='Incorrect corner projection')
            np.testing.assert_allclose(
                img_corners_norm,
                img_corners_norm_out,
                atol=1e-04,
                err_msg='Incorrect normalized corner projection')
Exemple #5
0
def main():
    """This demo visualizes box 8C format predicted by MLOD, before
    getting converted to Box 3D.

    Keys:
        F1: Toggle predictions
        F2: Toggle easy ground truth objects (Green)
        F3: Toggle medium ground truth objects (Orange)
        F4: Toggle hard ground truth objects (Red)
        F5: Toggle all ground truth objects (default off)

        F6: Toggle 3D voxel grid
        F7: Toggle point cloud
    """
    ##############################
    # Options
    ##############################
    mlod_score_threshold = 0.1
    show_orientations = True

    checkpoint_name = 'mlod_exp_8c'

    global_step = None

    sample_name = None

    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL_HALF)

    dataset = DatasetBuilder.build_kitti_dataset(dataset_config)
    ##############################
    # Setup Paths
    ##############################

    # # # Cars # # #
    # sample_name = '000050'
    # sample_name = '000104'
    # sample_name = '000169'
    # sample_name = '000191'
    # sample_name = '000360'
    # sample_name = '001783'
    # sample_name = '001820'
    # sample_name = '006338'

    # # # People # # #
    # val_half split
    # sample_name = '000001'
    sample_name = '000005'  # Easy, 1 ped
    # sample_name = '000122'  # Easy, 1 cyc
    # sample_name = '000134'  # Hard, lots of people
    # sample_name = '000167'  # Medium, 1 ped, 2 cycs
    # sample_name = '000187'  # Medium, 1 ped on left
    # sample_name = '000381'  # Easy, 1 ped
    # sample_name = '000398'  # Easy, 1 ped
    # sample_name = '000401'  # Hard, obscured peds
    # sample_name = '000407'  # Easy, 1 ped
    # sample_name = '000448'  # Hard, several far people
    # sample_name = '000486'  # Hard 2 obscured peds
    # sample_name = '000509'  # Easy, 1 ped
    # sample_name = '000718'  # Hard, lots of people
    # sample_name = '002216'  # Easy, 1 cyc

    # Random sample
    if sample_name is None:
        sample_idx = np.random.randint(0, dataset.num_samples)
        sample_name = dataset.sample_list[sample_idx]

    img_idx = int(sample_name)

    # Text files directory
    predictions_and_scores_dir = mlod.root_dir() + \
        '/data/outputs/' + checkpoint_name + '/predictions' +  \
        '/final_boxes_8c_and_scores/' + dataset.data_split

    # Get checkpoint step
    steps = os.listdir(predictions_and_scores_dir)
    steps.sort(key=int)
    print('Available steps: {}'.format(steps))

    # Use latest checkpoint if no index provided
    if global_step is None:
        global_step = steps[-1]

    ##############################
    # predictions
    ##############################
    # Load predictions from files
    predictions_and_scores = np.loadtxt(
        predictions_and_scores_dir +
        "/{}/{}.txt".format(global_step, sample_name))

    predictions_boxes_8c = predictions_and_scores[:, 0:24]
    prediction_scores = predictions_and_scores[:, 24]

    score_mask = prediction_scores >= mlod_score_threshold
    predictions_boxes_8c = predictions_boxes_8c[score_mask]

    all_vtk_box_corners = []
    predictions_boxes_8c = np.reshape(predictions_boxes_8c, [-1, 3, 8])
    for i in range(len(predictions_boxes_8c)):
        box_8c = predictions_boxes_8c[i, :, :]
        vtk_box_corners = VtkBox8c()
        vtk_box_corners.set_objects(box_8c)
        all_vtk_box_corners.append(vtk_box_corners)

    ##############################
    # Ground Truth
    ##############################
    if dataset.has_labels:
        easy_gt_objs, medium_gt_objs, \
            hard_gt_objs, all_gt_objs = \
            demo_utils.get_gts_based_on_difficulty(dataset,
                                                   img_idx)
    else:
        easy_gt_objs = medium_gt_objs = hard_gt_objs = all_gt_objs = []

    ##############################
    # Point Cloud
    ##############################
    image_path = dataset.get_rgb_image_path(sample_name)
    image = cv2.imread(image_path)
    img_idx = int(sample_name)

    points, point_colours = demo_utils.get_filtered_pc_and_colours(
        dataset, image, img_idx)

    # Voxelize the point cloud for visualization
    voxel_grid = VoxelGrid()
    voxel_grid.voxelize(points, voxel_size=0.1, create_leaf_layout=False)

    ##############################
    # Visualization
    ##############################
    # Create VtkVoxelGrid
    vtk_voxel_grid = VtkVoxelGrid()
    vtk_voxel_grid.set_voxels(voxel_grid)

    vtk_point_cloud = VtkPointCloud()
    vtk_point_cloud.set_points(points, point_colours)

    # Create VtkAxes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Create VtkBoxes for ground truth
    vtk_easy_gt_boxes, vtk_medium_gt_boxes, \
        vtk_hard_gt_boxes, vtk_all_gt_boxes = \
        demo_utils.create_gt_vtk_boxes(easy_gt_objs,
                                       medium_gt_objs,
                                       hard_gt_objs,
                                       all_gt_objs,
                                       show_orientations)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)

    vtk_box_actors = vtk.vtkAssembly()

    # Create VtkBoxes for prediction boxes
    for i in range(len(all_vtk_box_corners)):
        # Adding labels, slows down rendering
        # vtk_renderer.AddActor(all_vtk_box_corners[i].
        # vtk_text_labels.vtk_actor)
        vtk_box_actors.AddPart(all_vtk_box_corners[i].vtk_actor)

    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)

    vtk_renderer.SetBackground(0.2, 0.3, 0.4)
    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)

    vtk_renderer.AddActor(vtk_hard_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_medium_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_easy_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_all_gt_boxes.vtk_actor)

    vtk_renderer.AddActor(vtk_box_actors)

    vtk_renderer.AddActor(axes)

    # Set initial properties for some actors
    vtk_point_cloud.vtk_actor.GetProperty().SetPointSize(2)
    vtk_voxel_grid.vtk_actor.SetVisibility(0)
    vtk_all_gt_boxes.vtk_actor.SetVisibility(0)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(160.0)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(2.5)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName(
        "Predictions: Step {}, Sample {}, Min Score {}".format(
            global_step,
            sample_name,
            mlod_score_threshold,
        ))

    vtk_render_window.SetSize(900, 600)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_box_actors, vtk_easy_gt_boxes.vtk_actor,
            vtk_medium_gt_boxes.vtk_actor, vtk_hard_gt_boxes.vtk_actor,
            vtk_all_gt_boxes.vtk_actor, vtk_voxel_grid.vtk_actor,
            vtk_point_cloud.vtk_actor
        ]))

    vtk_render_window_interactor.Start()
Exemple #6
0
def main():
    """
    Displays the bird's eye view maps for a KITTI sample.
    """

    ##############################
    # Options
    ##############################

    # one of ['height_priors', 'slices']
    bev_generator = 'slices'

    height_priors_config = \
        """
        height_priors {
            ground_filter_offset: 0.2
            offset_filter_distance: 2.0
            std_dev_multiplier: 2.0
        }
        """

    slices_config = \
        """
        slices {
            height_lo: -0.2
            height_hi: 2.3
            num_slices: 5
        }
        """

    # Use None for a random image
    img_idx = None
    # img_idx = 142
    # img_idx = 191

    show_ground_truth = True  # Whether to overlay ground_truth boxes

    point_cloud_source = 'lidar'
    ##############################
    # End of Options
    ##############################

    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL)
    dataset_config = DatasetBuilder.merge_defaults(dataset_config)

    # Overwrite bev_generator
    if bev_generator == 'height_priors':
        text_format.Merge(height_priors_config,
                          dataset_config.kitti_utils_config.bev_generator)
    elif bev_generator == 'slices':
        text_format.Merge(slices_config,
                          dataset_config.kitti_utils_config.bev_generator)
    else:
        raise ValueError('Invalid bev_generator')

    dataset = DatasetBuilder.build_kitti_dataset(dataset_config,
                                                 use_defaults=False)

    if img_idx is None:
        img_idx = int(random.random() * dataset.num_samples)

    sample_name = "{:06}".format(img_idx)
    print('=== Showing BEV maps for image: {}.png ==='.format(sample_name))

    # Load image
    image = cv2.imread(dataset.get_rgb_image_path(sample_name))
    image_shape = image.shape[0:2]

    kitti_utils = dataset.kitti_utils
    point_cloud = kitti_utils.get_point_cloud(point_cloud_source, img_idx,
                                              image_shape)
    ground_plane = kitti_utils.get_ground_plane(sample_name)
    bev_images = kitti_utils.create_bev_maps(point_cloud, ground_plane)

    height_maps = np.array(bev_images.get("height_maps"))
    density_map = np.array(bev_images.get("density_map"))

    box_points, box_points_norm = [None, None]
    if show_ground_truth:
        # Get projected boxes
        obj_labels = obj_utils.read_labels(dataset.label_dir, img_idx)

        filtered_objs = obj_labels

        label_boxes = []
        for label in filtered_objs:
            box = box_3d_encoder.object_label_to_box_3d(label)
            label_boxes.append(box)

        label_boxes = np.array(label_boxes)
        box_points, box_points_norm = box_3d_projector.project_to_bev(
            label_boxes, [[-40, 40], [0, 70]])

    rgb_img_size = (np.array((1242, 375)) * 0.75).astype(np.int16)
    img_x_start = 60
    img_y_start = 330

    img_x = img_x_start
    img_y = img_y_start
    img_w = 400
    img_h = 350
    img_titlebar_h = 20

    # Show images
    vis_utils.cv2_show_image("Image",
                             image,
                             size_wh=rgb_img_size,
                             location_xy=(img_x, 0))

    # Height maps
    for map_idx in range(len(height_maps)):
        height_map = height_maps[map_idx]

        height_map = draw_boxes(height_map, box_points_norm)
        vis_utils.cv2_show_image("Height Map {}".format(map_idx),
                                 height_map,
                                 size_wh=(img_w, img_h),
                                 location_xy=(img_x, img_y))

        img_x += img_w
        # Wrap around
        if (img_x + img_w) > 1920:
            img_x = img_x_start
            img_y += img_h + img_titlebar_h

    # Density map
    density_map = draw_boxes(density_map, box_points_norm)
    vis_utils.cv2_show_image("Density Map",
                             density_map,
                             size_wh=(img_w, img_h),
                             location_xy=(img_x, img_y))

    cv2.waitKey()
Exemple #7
0
    def setUpClass(cls):
        dataset_config = DatasetBuilder.copy_config(
            DatasetBuilder.KITTI_UNITTEST)

        cls.dataset = DatasetBuilder.build_kitti_dataset(dataset_config)
        cls.label_dir = cls.dataset.label_dir
def main():
    """This demo shows RPN proposals and MLOD predictions in 3D
    and 2D in image space. Given certain thresholds for proposals
    and predictions, it selects and draws the bounding boxes on
    the image sample. It goes through the entire proposal and
    prediction samples for the given dataset split.

    The proposals, overlaid, and prediction images can be toggled on or off
    separately in the options section.
    The prediction score and IoU with ground truth can be toggled on or off
    as well, shown as (score, IoU) above the detection.
    """
    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL)

    ##############################
    # Options
    ##############################
    dataset_config.data_split = 'val'

    fig_size = (10, 6.1)

    rpn_score_threshold = 0.1
    mlod_score_threshold = 0.1

    # Flag for projecting the 3D boxes to image space
    # in tensor format (for testing purposes)
    test_img_tensor_projection = False

    gt_classes = ['Pedestrian', 'Cyclist']
    # gt_classes = ['Pedestrian', 'Cyclist']

    # Overwrite this to select a specific checkpoint
    global_step = 44000
    checkpoint_name = 'mlod_fpn_people'

    # Drawing Toggles
    draw_proposals_separate = False
    draw_overlaid = False
    draw_predictions_separate = True

    # Show orientation for both GT and proposals/predictions
    draw_orientations_on_prop = False
    draw_orientations_on_pred = False

    # Draw 2D bounding boxes
    draw_projected_2d_boxes = False

    # Save images for samples with no detections
    save_empty_images = True

    draw_score = True
    draw_iou = False
    iou_3d = False
    ##############################
    # End of Options
    ##############################

    # Get the dataset
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config)

    # Setup Paths
    predictions_dir = mlod.root_dir() + \
        '/data/outputs/' + checkpoint_name + '/predictions'

    proposals_and_scores_dir = predictions_dir + \
        '/proposals_and_scores/' + dataset.data_split

    predictions_and_scores_dir = predictions_dir + \
        '/final_predictions_and_scores/' + dataset.data_split

    # Output images directories
    output_dir_base = predictions_dir + '/images_2d'

    # Get checkpoint step
    steps = os.listdir(proposals_and_scores_dir)
    steps.sort(key=int)
    print('Available steps: {}'.format(steps))

    # Use latest checkpoint if no index provided
    if global_step is None:
        global_step = steps[-1]

    if draw_proposals_separate:
        prop_out_dir = output_dir_base + '/proposals/{}/{}/{}'.format(
            dataset.data_split, global_step, rpn_score_threshold)

        if not os.path.exists(prop_out_dir):
            os.makedirs(prop_out_dir)

        print('Proposal images saved to:', prop_out_dir)

    if draw_overlaid:
        overlaid_out_dir = output_dir_base + '/overlaid/{}/{}/{}'.format(
            dataset.data_split, global_step, mlod_score_threshold)

        if not os.path.exists(overlaid_out_dir):
            os.makedirs(overlaid_out_dir)

        print('Overlaid images saved to:', overlaid_out_dir)

    if draw_predictions_separate:
        pred_out_dir = output_dir_base + '/predictions/{}/{}/{}'.format(
            dataset.data_split, global_step,
            mlod_score_threshold)

        if not os.path.exists(pred_out_dir):
            os.makedirs(pred_out_dir)

        print('Prediction images saved to:', pred_out_dir)

    # Rolling average array of times for time estimation
    avg_time_arr_length = 10
    last_times = np.repeat(time.time(), avg_time_arr_length) + \
        np.arange(avg_time_arr_length)

    for sample_idx in range(dataset.num_samples):
        # Estimate time remaining with 5 slowest times
        start_time = time.time()
        last_times = np.roll(last_times, -1)
        last_times[-1] = start_time
        avg_time = np.mean(np.sort(np.diff(last_times))[-5:])
        samples_remaining = dataset.num_samples - sample_idx
        est_time_left = avg_time * samples_remaining

        # Print progress and time remaining estimate
        sys.stdout.write('\rSaving {} / {}, Avg Time: {:.3f}s, '
                         'Time Remaining: {:.2f}s'. format(
                             sample_idx + 1,
                             dataset.num_samples,
                             avg_time,
                             est_time_left))
        sys.stdout.flush()

        sample_name = dataset.sample_names[sample_idx]
        img_idx = int(sample_name)

        ##############################
        # Proposals
        ##############################
        if draw_proposals_separate or draw_overlaid:
            # Load proposals from files
            proposals_file_path = proposals_and_scores_dir + \
                "/{}/{}.txt".format(global_step, sample_name)
            if not os.path.exists(proposals_file_path):
                print('Sample {}: No proposals, skipping'.format(sample_name))
                continue
            print('Sample {}: Drawing proposals'.format(sample_name))

            proposals_and_scores = np.loadtxt(proposals_file_path)

            proposal_boxes_3d = proposals_and_scores[:, 0:7]
            proposal_scores = proposals_and_scores[:, 7]

            # Apply score mask to proposals
            score_mask = proposal_scores > rpn_score_threshold
            proposal_boxes_3d = proposal_boxes_3d[score_mask]
            proposal_scores = proposal_scores[score_mask]

            proposal_objs = \
                [box_3d_encoder.box_3d_to_object_label(proposal,
                                                       obj_type='Proposal')
                 for proposal in proposal_boxes_3d]

        ##############################
        # Predictions
        ##############################
        if draw_predictions_separate or draw_overlaid:
            predictions_file_path = predictions_and_scores_dir + \
                "/{}/{}.txt".format(global_step,
                                    sample_name)
            if not os.path.exists(predictions_file_path):
                continue

            # Load predictions from files
            predictions_and_scores = np.loadtxt(
                predictions_and_scores_dir +
                "/{}/{}.txt".format(global_step,
                                    sample_name))

            prediction_boxes_3d = predictions_and_scores[:, 0:7]
            prediction_scores = predictions_and_scores[:, 7]
            prediction_class_indices = predictions_and_scores[:, 8]

            # process predictions only if we have any predictions left after
            # masking
            if len(prediction_boxes_3d) > 0:

                # Apply score mask
                
                mlod_score_mask = prediction_scores >= 0.1
                mlod_show_mask = mlod_score_mask

                prediction_boxes_3d = prediction_boxes_3d[mlod_show_mask]
                prediction_scores = prediction_scores[mlod_show_mask]
                prediction_class_indices = \
                    prediction_class_indices[mlod_show_mask]

                # # Swap l, w for predictions where w > l
                # swapped_indices = \
                #     prediction_boxes_3d[:, 4] > prediction_boxes_3d[:, 3]
                # prediction_boxes_3d = np.copy(prediction_boxes_3d)
                # prediction_boxes_3d[swapped_indices, 3] = \
                #     prediction_boxes_3d[swapped_indices, 4]
                # prediction_boxes_3d[swapped_indices, 4] = \
                #     prediction_boxes_3d[swapped_indices, 3]

        ##############################
        # Ground Truth
        ##############################

        # Get ground truth labels
        dataset.has_labels = False
        if dataset.has_labels:
            gt_objects = obj_utils.read_labels(dataset.label_dir, img_idx)
        else:
            gt_objects = []

        # Filter objects to desired difficulty
        filtered_gt_objs = dataset.kitti_utils.filter_labels(
            gt_objects, classes=gt_classes)

        boxes2d, _, _ = obj_utils.build_bbs_from_objects(
            filtered_gt_objs, class_needed=gt_classes)

        image_path = dataset.get_rgb_image_path(sample_name)
        image = Image.open(image_path)
        image_size = image.size

        # Read the stereo calibration matrix for visualization
        stereo_calib = calib_utils.read_calibration(dataset.calib_dir,
                                                    img_idx)
        calib_p2 = stereo_calib.p2

        ##############################
        # Reformat and prepare to draw
        ##############################
        if draw_proposals_separate or draw_overlaid:
            proposals_as_anchors = box_3d_encoder.box_3d_to_anchor(
                proposal_boxes_3d)

            if test_img_tensor_projection:
                proposal_boxes = demo_utils.tf_project_to_image_space(
                    proposals_as_anchors, calib_p2, image_size, img_idx)

            else:
                proposal_boxes, _ = anchor_projector.project_to_image_space(
                    proposals_as_anchors, calib_p2, image_size)

            num_of_proposals = proposal_boxes_3d.shape[0]

            prop_fig, prop_2d_axes, prop_3d_axes = \
                vis_utils.visualization(dataset.rgb_image_dir,
                                        img_idx,
                                        display=False)

            draw_proposals(filtered_gt_objs,
                           calib_p2,
                           num_of_proposals,
                           proposal_objs,
                           proposal_boxes,
                           prop_2d_axes,
                           prop_3d_axes,
                           draw_orientations_on_prop)

            if draw_proposals_separate:
                # Save just the proposals
                filename = prop_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)

                if not draw_overlaid:
                    plt.close(prop_fig)

        if draw_overlaid or draw_predictions_separate:
            if len(prediction_boxes_3d) > 0:
                # Project the 3D box predictions to image space
                image_filter = []
                final_boxes_2d = []
                for i in range(len(prediction_boxes_3d)):
                    box_3d = prediction_boxes_3d[i, 0:7]
                    img_box = box_3d_projector.project_to_image_space(
                        box_3d, calib_p2,
                        truncate=True, image_size=image_size,
                        discard_before_truncation=False)
                    if img_box is not None:
                        image_filter.append(True)
                        final_boxes_2d.append(img_box)
                    else:
                        image_filter.append(False)
                final_boxes_2d = np.asarray(final_boxes_2d)
                final_prediction_boxes_3d = prediction_boxes_3d[image_filter]
                final_scores = prediction_scores[image_filter]
                final_class_indices = prediction_class_indices[image_filter]

                num_of_predictions = final_boxes_2d.shape[0]

                # Convert to objs
                final_prediction_objs = \
                    [box_3d_encoder.box_3d_to_object_label(
                        prediction, obj_type='Prediction')
                        for prediction in final_prediction_boxes_3d]
                for (obj, score) in zip(final_prediction_objs, final_scores):
                    obj.score = score
            else:
                if save_empty_images:
                    pred_fig, pred_2d_axes, pred_3d_axes = \
                        vis_utils.visualization(dataset.rgb_image_dir,
                                                img_idx,
                                                display=False,
                                                fig_size=fig_size)
                    filename = pred_out_dir + '/' + sample_name + '.png'
                    plt.savefig(filename)
                    plt.close(pred_fig)
                continue

            if draw_overlaid:
                # Overlay prediction boxes on image
                draw_predictions(filtered_gt_objs,
                                 calib_p2,
                                 num_of_predictions,
                                 final_prediction_objs,
                                 final_class_indices,
                                 final_boxes_2d,
                                 prop_2d_axes,
                                 prop_3d_axes,
                                 draw_score,
                                 draw_iou,
                                 gt_classes,
                                 draw_orientations_on_pred,
                                 iou_3d)
                filename = overlaid_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)

                plt.close(prop_fig)

            if draw_predictions_separate:
                # Now only draw prediction boxes on images
                # on a new figure handler
                if draw_projected_2d_boxes:
                    pred_fig, pred_2d_axes, pred_3d_axes = \
                        vis_utils.visualization(dataset.rgb_image_dir,
                                                img_idx,
                                                display=False,
                                                fig_size=fig_size)

                    draw_predictions(filtered_gt_objs,
                                     calib_p2,
                                     num_of_predictions,
                                     final_prediction_objs,
                                     final_class_indices,
                                     final_boxes_2d,
                                     pred_2d_axes,
                                     pred_3d_axes,
                                     draw_score,
                                     draw_iou,
                                     gt_classes,
                                     draw_orientations_on_pred,
                                     iou_3d)
                else:
                    pred_fig, pred_3d_axes = \
                        vis_utils.visualize_single_plot(
                            dataset.rgb_image_dir, img_idx, display=False)

                    draw_3d_predictions(filtered_gt_objs,
                                        calib_p2,
                                        num_of_predictions,
                                        final_prediction_objs,
                                        final_class_indices,
                                        final_boxes_2d,
                                        pred_3d_axes,
                                        draw_score,
                                        draw_iou,
                                        gt_classes,
                                        draw_orientations_on_pred)
                filename = pred_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)
                plt.close(pred_fig)

    print('\nDone')
Exemple #9
0
def train_and_eval(model_config, train_config, eval_config, dataset_config):

    # Dataset Configuration
    dataset_config_train = DatasetBuilder.copy_config(dataset_config)
    dataset_config_eval = DatasetBuilder.copy_config(dataset_config)

    dataset_train = DatasetBuilder.build_kitti_dataset(dataset_config_train,
                                                       use_defaults=False)
    dataset_eval = DatasetBuilder.build_kitti_dataset(dataset_config_eval,
                                                      use_defaults=False)

    model_name = model_config.model_name
    train_val_test = 'train'
    eval_mode = eval_config.eval_mode
    if eval_mode == 'train':
        raise ValueError('Evaluation mode can only be set to `val` or `test`.')

    # keep a copy as this will be overwritten inside
    # the training loop below
    max_train_iter = train_config.max_iterations
    checkpoint_interval = train_config.checkpoint_interval
    eval_interval = eval_config.eval_interval

    if eval_interval < checkpoint_interval or \
            (eval_interval % checkpoint_interval) != 0:
        raise ValueError(
            'Checkpoint interval (given {}) must be greater than and'
            'divisible by the evaluation interval (given {}).'.format(
                eval_interval, checkpoint_interval))

    # Use the evaluation losses file to continue from the latest
    # checkpoint
    already_evaluated_ckpts = evaluator.get_evaluated_ckpts(
        model_config, model_name)

    if len(already_evaluated_ckpts) != 0:
        current_train_iter = already_evaluated_ckpts[-1]
    else:
        current_train_iter = eval_interval

    # while training is not finished
    while current_train_iter <= max_train_iter:
        # Train
        with tf.Graph().as_default():
            if model_name == 'mlod_model':
                model = MlodModel(model_config,
                                  train_val_test=train_val_test,
                                  dataset=dataset_train)
            elif model_name == 'rpn_model':
                model = RpnModel(model_config,
                                 train_val_test=train_val_test,
                                 dataset=dataset_train)
            else:
                raise ValueError('Invalid model name {}'.format(model_name))

            # overwrite the training epochs
            train_config.max_iterations = current_train_iter
            print('\n*************** Training ****************\n')
            trainer.train(model, train_config)
        current_train_iter += eval_interval

        # Evaluate
        with tf.Graph().as_default():
            if model_name == 'mlod_model':
                model = MlodModel(model_config,
                                  train_val_test=eval_mode,
                                  dataset=dataset_eval)
            elif model_name == 'rpn_model':
                model = RpnModel(model_config,
                                 train_val_test=eval_mode,
                                 dataset=dataset_eval)
            else:
                raise ValueError('Invalid model name {}'.format(model_name))

            print('\n*************** Evaluating *****************\n')
            evaluator.run_latest_checkpoints(model, dataset_config_eval)
    print('\n************ Finished training and evaluating *************\n')
def main():
    """
    Visualization of 3D grid anchor generation, showing 2D projections
        in BEV and image space, and a 3D display of the anchors
    """
    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_TRAIN)
    dataset_config.num_clusters[0] = 1
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config)

    label_cluster_utils = LabelClusterUtils(dataset)
    clusters, _ = label_cluster_utils.get_clusters()

    # Options
    img_idx = 1
    # fake_clusters = np.array([[5, 4, 3], [6, 5, 4]])
    # fake_clusters = np.array([[3, 3, 3], [4, 4, 4]])

    fake_clusters = np.array([[4, 2, 3]])
    fake_anchor_stride = [5.0, 5.0]
    ground_plane = [0, -1, 0, 1.72]

    anchor_3d_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()

    area_extents = np.array([[-40, 40], [-5, 5], [0, 70]])

    # Generate anchors for cars only
    start_time = time.time()
    anchor_boxes_3d = anchor_3d_generator.generate(
        area_3d=dataset.kitti_utils.area_extents,
        anchor_3d_sizes=fake_clusters,
        anchor_stride=fake_anchor_stride,
        ground_plane=ground_plane)
    all_anchors = box_3d_encoder.box_3d_to_anchor(anchor_boxes_3d)
    end_time = time.time()
    print("Anchors generated in {} s".format(end_time - start_time))

    # Project into bev
    bev_boxes, bev_normalized_boxes = \
        anchor_projector.project_to_bev(all_anchors, area_extents[[0, 2]])

    bev_fig, (bev_axes, bev_normalized_axes) = \
        plt.subplots(1, 2, figsize=(16, 7))
    bev_axes.set_xlim(0, 80)
    bev_axes.set_ylim(70, 0)
    bev_normalized_axes.set_xlim(0, 1.0)
    bev_normalized_axes.set_ylim(1, 0.0)

    plt.show(block=False)

    for box in bev_boxes:
        box_w = box[2] - box[0]
        box_h = box[3] - box[1]

        rect = patches.Rectangle((box[0], box[1]),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        bev_axes.add_patch(rect)

    for normalized_box in bev_normalized_boxes:
        box_w = normalized_box[2] - normalized_box[0]
        box_h = normalized_box[3] - normalized_box[1]

        rect = patches.Rectangle((normalized_box[0], normalized_box[1]),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        bev_normalized_axes.add_patch(rect)

    rgb_fig, rgb_2d_axes, rgb_3d_axes = \
        vis_utils.visualization(dataset.rgb_image_dir, img_idx)
    plt.show(block=False)

    image_path = dataset.get_rgb_image_path(dataset.sample_names[img_idx])
    image_shape = np.array(Image.open(image_path)).shape

    stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir,
                                                   img_idx).p2

    start_time = time.time()
    rgb_boxes, rgb_normalized_boxes = \
        anchor_projector.project_to_image_space(all_anchors,
                                                stereo_calib_p2,
                                                image_shape)
    end_time = time.time()
    print("Anchors projected in {} s".format(end_time - start_time))

    # Read the stereo calibration matrix for visualization
    stereo_calib = calib_utils.read_calibration(dataset.calib_dir, 0)
    p = stereo_calib.p2

    # Overlay boxes on images
    anchor_objects = []
    for anchor_idx in range(len(anchor_boxes_3d)):
        anchor_box_3d = anchor_boxes_3d[anchor_idx]

        obj_label = box_3d_encoder.box_3d_to_object_label(anchor_box_3d)

        # Append to a list for visualization in VTK later
        anchor_objects.append(obj_label)

        # Draw 3D boxes
        vis_utils.draw_box_3d(rgb_3d_axes, obj_label, p)

        # Draw 2D boxes
        rgb_box_2d = rgb_boxes[anchor_idx]

        box_x1 = rgb_box_2d[0]
        box_y1 = rgb_box_2d[1]
        box_w = rgb_box_2d[2] - box_x1
        box_h = rgb_box_2d[3] - box_y1

        rect = patches.Rectangle((box_x1, box_y1),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        rgb_2d_axes.add_patch(rect)

        if anchor_idx % 32 == 0:
            rgb_fig.canvas.draw()

    plt.show(block=False)

    # Create VtkGroundPlane for ground plane visualization
    vtk_ground_plane = VtkGroundPlane()
    vtk_ground_plane.set_plane(ground_plane, area_extents[[0, 2]])

    # Create VtkAxes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Create VtkBoxes for boxes
    vtk_boxes = VtkBoxes()
    vtk_boxes.set_objects(anchor_objects, vtk_boxes.COLOUR_SCHEME_KITTI)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.AddActor(vtk_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_ground_plane.vtk_actor)
    vtk_renderer.AddActor(axes)
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(170.0)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(2.5)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName("Anchors")
    vtk_render_window.SetSize(900, 500)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    vtk_render_window_interactor.SetInteractorStyle(
        vtk.vtkInteractorStyleTrackballCamera())

    # Render in VTK
    vtk_render_window.Render()
    vtk_render_window_interactor.Start()  # Blocking