def sample_mini_batch(self, anchor_box_list_gt, anchor_box_list, img_box_list_gt, img_box_list, class_labels): with tf.variable_scope('mlod_create_mb_mask'): # Get IoU for every anchor all_bev_ious = box_list_ops.iou(anchor_box_list_gt, anchor_box_list) max_bev_ious = tf.reduce_max(all_bev_ious, axis=0) max_bev_iou_indices = tf.argmax(all_bev_ious, axis=0) all_img_ious = box_list_ops.iou(img_box_list_gt, img_box_list) max_img_ious = tf.reduce_max(all_img_ious, axis=0) max_img_iou_indices = tf.argmax(all_img_ious, axis=0) # Sample a pos/neg mini-batch from anchors with highest IoU match mini_batch_utils = self.dataset.kitti_utils.mini_batch_utils #bev mask mb_bev_mask, mb_pos_bev_mask = mini_batch_utils.sample_mlod_mini_batch( max_bev_ious) mb_mask, mb_pos_img_mask = mini_batch_utils.double_sample_img_mini_batch( max_img_ious, mb_bev_mask) mb_bev_class_label_indices = mini_batch_utils.mask_class_label_indices( mb_pos_bev_mask, mb_mask, max_bev_iou_indices, class_labels) mb_img_class_label_indices = mini_batch_utils.mask_class_label_indices( mb_pos_img_mask, mb_mask, max_img_iou_indices, class_labels) mb_bev_gt_indices = tf.boolean_mask(max_bev_iou_indices, mb_mask) mb_img_gt_indices = tf.boolean_mask(max_img_iou_indices, mb_mask) return mb_mask, mb_bev_class_label_indices, mb_img_class_label_indices, mb_bev_gt_indices, mb_img_gt_indices
def test_iouworks_on_empty_inputs(self): corners1 = tf.constant([[4.0, 3.0, 7.0, 5.0], [5.0, 6.0, 10.0, 7.0]]) corners2 = tf.constant([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]]) boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) boxes_empty = box_list.BoxList(tf.zeros((0, 4))) iou_empty_1 = box_list_ops.iou(boxes1, boxes_empty) iou_empty_2 = box_list_ops.iou(boxes_empty, boxes2) iou_empty_3 = box_list_ops.iou(boxes_empty, boxes_empty) with self.test_session() as sess: iou_output_1, iou_output_2, iou_output_3 = sess.run( [iou_empty_1, iou_empty_2, iou_empty_3]) self.assertAllEqual(iou_output_1.shape, (2, 0)) self.assertAllEqual(iou_output_2.shape, (0, 3)) self.assertAllEqual(iou_output_3.shape, (0, 0))
def test_iou(self): corners1 = tf.constant([[4.0, 3.0, 7.0, 5.0], [5.0, 6.0, 10.0, 7.0]]) corners2 = tf.constant([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]]) exp_output = [ [2.0 / 16.0, 0, 6.0 / 400.0], [1.0 / 16.0, 0.0, 5.0 / 400.0]] boxes1 = box_list.BoxList(corners1) boxes2 = box_list.BoxList(corners2) iou = box_list_ops.iou(boxes1, boxes2) with self.test_session() as sess: iou_output = sess.run(iou) self.assertAllClose(iou_output, exp_output)
def test_iou_mask_ops(self): # corners are in [y1, x1, y2, x2] format corners_pred = tf.constant( [[4.0, 3.0, 7.0, 5.0], [14.0, 14.0, 16.0, 16.0], [0.0, 0.0, 21.0, 19.0], [3.0, 4.0, 5.0, 7.0]]) corners_gt = tf.constant( [[4.0, 3.0, 7.0, 6.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]]) # 3 classes class_indices = tf.constant([1., 2., 3.]) exp_ious = [[0.66666669, 0., 0.02255639, 0.15384616], [0., 0.25, 0.00250627, 0.], [0.015, 0.01, 0.90692127, 0.015]] exp_max_ious = np.array([0.66666669, 0.25, 0.90692127, 0.15384616]) exp_max_indices = np.array([0, 1, 2, 0]) exp_pos_mask = np.array([True, False, True, False]) exp_class_and_background_indices = np.array([1, 0, 3, 0]) # Convert to box_list format boxes_pred = box_list.BoxList(corners_pred) boxes_gt = box_list.BoxList(corners_gt) # Calculate IoU iou = box_list_ops.iou(boxes_gt, boxes_pred) # Get max IoU, the dimension should match the anchors we are # evaluating max_ious = tf.reduce_max(iou, axis=0) max_iou_indices = tf.argmax(iou, axis=0) # Sample a mini-batch from anchors with highest IoU match mini_batch_size = 4 # Custom positive/negative iou ranges neg_2d_iou_range = [0.0, 0.3] pos_2d_iou_range = [0.6, 0.7] mb_mask, mb_pos_mask = \ self.mb_utils.sample_mini_batch(max_ious, mini_batch_size, neg_2d_iou_range, pos_2d_iou_range) mb_class_indices = self.mb_utils.mask_class_label_indices( mb_pos_mask, mb_mask, max_iou_indices, class_indices) with self.test_session() as sess: iou_out = sess.run(iou) max_ious_out, max_iou_indices_out = sess.run([max_ious, max_iou_indices]) mb_mask_out, mb_pos_mask_out = sess.run([mb_mask, mb_pos_mask]) class_indices_out = sess.run(mb_class_indices) self.assertAllClose(iou_out, exp_ious) self.assertAllClose(max_ious_out, exp_max_ious) self.assertAllEqual(max_iou_indices_out, exp_max_indices) self.assertAllEqual(exp_pos_mask, mb_pos_mask_out) self.assertAllEqual(class_indices_out, exp_class_and_background_indices)
def main(): """ This demo shows example mini batch info for full MlodModel training. This includes ground truth, ortho rotated ground truth, negative proposal anchors, positive proposal anchors, and a sampled mini batch. The 2D iou can be modified to show the effect of changing the iou threshold for mini batch sampling. In order to let this demo run without training an RPN, the proposals shown are being read from a text file. Keys: F1: Toggle ground truth F2: Toggle ortho rotated ground truth F3: Toggle negative proposal anchors F4: Toggle positive proposal anchors F5: Toggle mini batch anchors """ ############################## # Options ############################## # Config file folder, default (<mlod_root>/data/outputs/<checkpoint_name>) config_dir = None # checkpoint_name = None checkpoint_name = 'mlod_exp_example' data_split = 'val_half' # global_step = None global_step = 100000 # # # Cars # # # # sample_name = "000050" sample_name = "000104" # sample_name = "000764" # # # People # # # # val_half # sample_name = '000001' # Hard, 1 far cyc # sample_name = '000005' # Easy, 1 ped # sample_name = '000122' # Easy, 1 cyc # sample_name = '000134' # Hard, lots of people # sample_name = '000167' # Medium, 1 ped, 2 cycs # sample_name = '000187' # Medium, 1 ped on left # sample_name = '000381' # Easy, 1 ped # sample_name = '000398' # Easy, 1 ped # sample_name = '000401' # Hard, obscured peds # sample_name = '000407' # Easy, 1 ped # sample_name = '000448' # Hard, several far people # sample_name = '000486' # Hard 2 obscured peds # sample_name = '000509' # Easy, 1 ped # sample_name = '000718' # Hard, lots of people # sample_name = '002216' # Easy, 1 cyc mini_batch_size = 512 neg_proposal_2d_iou_hi = 0.6 pos_proposal_2d_iou_lo = 0.65 bkg_proposals_line_width = 0.5 neg_proposals_line_width = 0.5 mid_proposals_line_width = 0.5 pos_proposals_line_width = 1.0 ############################## # End of Options ############################## img_idx = int(sample_name) print("Showing mini batch for sample {}".format(sample_name)) # Read proposals from file if checkpoint_name is None: # Use VAL Dataset dataset = DatasetBuilder.build_kitti_dataset(DatasetBuilder.KITTI_VAL) # Load demo proposals proposals_and_scores_dir = mlod.top_dir() + \ '/demos/data/predictions/' + checkpoint_name + \ '/proposals_and_scores/' + dataset.data_split else: if config_dir is None: config_dir = mlod.root_dir() + '/data/outputs/' + checkpoint_name # Parse experiment config pipeline_config_file = \ config_dir + '/' + checkpoint_name + '.config' _, _, _, dataset_config = \ config_builder_util.get_configs_from_pipeline_file( pipeline_config_file, is_training=False) dataset_config.data_split = data_split dataset = DatasetBuilder.build_kitti_dataset(dataset_config, use_defaults=False) # Overwrite mini_batch_utils = dataset.kitti_utils.mini_batch_utils mini_batch_utils.mlod_neg_iou_range[1] = neg_proposal_2d_iou_hi mini_batch_utils.mlod_pos_iou_range[0] = pos_proposal_2d_iou_lo # Load proposals from outputs folder proposals_and_scores_dir = mlod.root_dir() + \ '/data/outputs/' + checkpoint_name + \ '/predictions/proposals_and_scores/' + dataset.data_split # Get checkpoint step steps = os.listdir(proposals_and_scores_dir) steps.sort(key=int) print('Available steps: {}'.format(steps)) # Use latest checkpoint if no index provided if global_step is None: global_step = steps[-1] proposals_and_scores = np.loadtxt( proposals_and_scores_dir + "/{}/{}.txt".format(global_step, sample_name)) proposal_boxes_3d = proposals_and_scores[:, 0:7] proposal_anchors = box_3d_encoder.box_3d_to_anchor(proposal_boxes_3d) # Get filtered ground truth obj_labels = obj_utils.read_labels(dataset.label_dir, img_idx) filtered_objs = dataset.kitti_utils.filter_labels(obj_labels) # Convert ground truth to anchors gt_boxes_3d = np.asarray([ box_3d_encoder.object_label_to_box_3d(obj_label) for obj_label in filtered_objs ]) gt_anchors = box_3d_encoder.box_3d_to_anchor(gt_boxes_3d, ortho_rotate=True) # Ortho rotate ground truth gt_ortho_boxes_3d = box_3d_encoder.anchors_to_box_3d(gt_anchors) gt_ortho_objs = [ box_3d_encoder.box_3d_to_object_label(box_3d, obj_type='OrthoGt') for box_3d in gt_ortho_boxes_3d ] # Project gt and anchors into BEV gt_bev_anchors, _ = \ anchor_projector.project_to_bev(gt_anchors, dataset.kitti_utils.bev_extents) bev_anchors, _ = \ anchor_projector.project_to_bev(proposal_anchors, dataset.kitti_utils.bev_extents) # Reorder boxes into (y1, x1, y2, x2) order gt_bev_anchors_tf_order = anchor_projector.reorder_projected_boxes( gt_bev_anchors) bev_anchors_tf_order = anchor_projector.reorder_projected_boxes( bev_anchors) # Convert to box_list format for iou calculation gt_anchor_box_list = box_list.BoxList( tf.cast(gt_bev_anchors_tf_order, tf.float32)) anchor_box_list = box_list.BoxList( tf.cast(bev_anchors_tf_order, tf.float32)) # Get IoU for every anchor tf_all_ious = box_list_ops.iou(gt_anchor_box_list, anchor_box_list) valid_ious = True # Make sure the calculated IoUs contain values. Since its a [N, M] # tensor, if there are no gt's for instance, that entry will be zero. if tf_all_ious.shape[0] == 0 or tf_all_ious.shape[1] == 0: print('#################################################') print('Warning: This sample does not contain valid IoUs') print('#################################################') valid_ious = False if valid_ious: tf_max_ious = tf.reduce_max(tf_all_ious, axis=0) tf_max_iou_indices = tf.argmax(tf_all_ious, axis=0) # Sample an RPN mini batch from the non empty anchors mini_batch_utils = dataset.kitti_utils.mini_batch_utils # Overwrite mini batch size and sample a mini batch mini_batch_utils.mlod_mini_batch_size = mini_batch_size mb_mask_tf, _ = mini_batch_utils.sample_mlod_mini_batch(tf_max_ious) # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) # Run the graph to calculate ious for every proposal and # to get the mini batch mask all_ious, max_ious, max_iou_indices = sess.run( [tf_all_ious, tf_max_ious, tf_max_iou_indices]) mb_mask = sess.run(mb_mask_tf) mb_anchors = proposal_anchors[mb_mask] mb_anchor_boxes_3d = box_3d_encoder.anchors_to_box_3d(mb_anchors) mb_anchor_ious = max_ious[mb_mask] else: # We have no valid IoU's, so assume all IoUs are zeros # and the mini-batch contains all the anchors since we cannot # mask without IoUs. max_ious = np.zeros(proposal_boxes_3d.shape[0]) mb_anchor_ious = max_ious mb_anchors = proposal_anchors mb_anchor_boxes_3d = box_3d_encoder.anchors_to_box_3d(mb_anchors) # Create list of positive/negative proposals based on iou pos_proposal_objs = [] mid_proposal_objs = [] neg_proposal_objs = [] bkg_proposal_objs = [] for i in range(len(proposal_boxes_3d)): box_3d = proposal_boxes_3d[i] if max_ious[i] == 0.0: # Background proposals bkg_proposal_objs.append( box_3d_encoder.box_3d_to_object_label( box_3d, obj_type='BackgroundProposal')) elif max_ious[i] < neg_proposal_2d_iou_hi: # Negative proposals neg_proposal_objs.append( box_3d_encoder.box_3d_to_object_label( box_3d, obj_type='NegativeProposal')) elif max_ious[i] < pos_proposal_2d_iou_lo: # Middle proposals (in between negative and positive) mid_proposal_objs.append( box_3d_encoder.box_3d_to_object_label( box_3d, obj_type='MiddleProposal')) elif max_ious[i] <= 1.0: # Positive proposals pos_proposal_objs.append( box_3d_encoder.box_3d_to_object_label( box_3d, obj_type='PositiveProposal')) else: raise ValueError('Invalid IoU > 1.0') print('{} bkg, {} neg, {} mid, {} pos proposals:'.format( len(bkg_proposal_objs), len(neg_proposal_objs), len(mid_proposal_objs), len(pos_proposal_objs))) # Convert the mini_batch anchors to object list mb_obj_list = [] for i in range(len(mb_anchor_ious)): if valid_ious and (mb_anchor_ious[i] > mini_batch_utils.mlod_pos_iou_range[0]): obj_type = "Positive" else: obj_type = "Negative" obj = box_3d_encoder.box_3d_to_object_label(mb_anchor_boxes_3d[i], obj_type) mb_obj_list.append(obj) # Point cloud image = cv2.imread(dataset.get_rgb_image_path(sample_name)) points, point_colours = demo_utils.get_filtered_pc_and_colours( dataset, image, img_idx) # Visualize from here vis_utils.visualization(dataset.rgb_image_dir, img_idx) plt.show(block=False) # VtkPointCloud vtk_point_cloud = VtkPointCloud() vtk_point_cloud.set_points(points, point_colours) # VtkAxes axes = vtk.vtkAxesActor() axes.SetTotalLength(5, 5, 5) # VtkBoxes for ground truth vtk_gt_boxes = VtkBoxes() vtk_gt_boxes.set_objects(filtered_objs, COLOUR_SCHEME) # VtkBoxes for ortho ground truth vtk_gt_ortho_boxes = VtkBoxes() vtk_gt_ortho_boxes.set_objects(gt_ortho_objs, COLOUR_SCHEME) # VtkBoxes for background proposals vtk_bkg_proposal_boxes = VtkBoxes() vtk_bkg_proposal_boxes.set_objects(bkg_proposal_objs, COLOUR_SCHEME) vtk_bkg_proposal_boxes.set_line_width(bkg_proposals_line_width) # VtkBoxes for negative proposals vtk_neg_proposal_boxes = VtkBoxes() vtk_neg_proposal_boxes.set_objects(neg_proposal_objs, COLOUR_SCHEME) vtk_neg_proposal_boxes.set_line_width(neg_proposals_line_width) # VtkBoxes for middle proposals vtk_mid_proposal_boxes = VtkBoxes() vtk_mid_proposal_boxes.set_objects(mid_proposal_objs, COLOUR_SCHEME) vtk_mid_proposal_boxes.set_line_width(mid_proposals_line_width) # VtkBoxes for positive proposals vtk_pos_proposal_boxes = VtkBoxes() vtk_pos_proposal_boxes.set_objects(pos_proposal_objs, COLOUR_SCHEME) vtk_pos_proposal_boxes.set_line_width(pos_proposals_line_width) # Create VtkBoxes for mini batch anchors vtk_mb_boxes = VtkBoxes() vtk_mb_boxes.set_objects(mb_obj_list, COLOUR_SCHEME) # Create Voxel Grid Renderer in bottom half vtk_renderer = vtk.vtkRenderer() vtk_renderer.SetBackground(0.2, 0.3, 0.4) # Add actors vtk_renderer.AddActor(axes) vtk_renderer.AddActor(vtk_point_cloud.vtk_actor) vtk_renderer.AddActor(vtk_gt_boxes.vtk_actor) vtk_renderer.AddActor(vtk_gt_ortho_boxes.vtk_actor) vtk_renderer.AddActor(vtk_bkg_proposal_boxes.vtk_actor) vtk_renderer.AddActor(vtk_neg_proposal_boxes.vtk_actor) vtk_renderer.AddActor(vtk_mid_proposal_boxes.vtk_actor) vtk_renderer.AddActor(vtk_pos_proposal_boxes.vtk_actor) vtk_renderer.AddActor(vtk_mb_boxes.vtk_actor) # Setup Camera current_cam = vtk_renderer.GetActiveCamera() current_cam.Pitch(160.0) current_cam.Roll(180.0) # Zooms out to fit all points on screen vtk_renderer.ResetCamera() # Zoom in slightly current_cam.Zoom(2.5) # Reset the clipping range to show all points vtk_renderer.ResetCameraClippingRange() # Setup Render Window vtk_render_window = vtk.vtkRenderWindow() vtk_render_window.SetWindowName("MLOD Mini Batch") vtk_render_window.SetSize(900, 500) vtk_render_window.AddRenderer(vtk_renderer) # Setup custom interactor style, which handles mouse and key events vtk_render_window_interactor = vtk.vtkRenderWindowInteractor() vtk_render_window_interactor.SetRenderWindow(vtk_render_window) vtk_render_window_interactor.SetInteractorStyle( vis_utils.ToggleActorsInteractorStyle([ vtk_gt_boxes.vtk_actor, vtk_gt_ortho_boxes.vtk_actor, vtk_bkg_proposal_boxes.vtk_actor, vtk_neg_proposal_boxes.vtk_actor, vtk_mid_proposal_boxes.vtk_actor, vtk_pos_proposal_boxes.vtk_actor, vtk_mb_boxes.vtk_actor, ])) # Render in VTK vtk_render_window.Render() vtk_render_window_interactor.Start()