def k_fold_cross_validation_per_epoch(mlp, dataset, k=5, learning_rate=0.01, momentum=0.7, epochs=100): MSE_train = np.zeros((k, epochs)) MSE_test = np.zeros((k, epochs)) parts = split_dataset(dataset, k) for k_i in np.arange(k): mlp.init_weights() training_parts = set(np.arange(k)) training_parts.remove(k_i) dataset_train = np.concatenate( [parts[i] for i in list(training_parts)]) dataset_test = parts[k_i] input_data = dataset_train[:, 0:mlp.n_inputs] output_data = dataset_train[:, mlp.n_inputs:(mlp.n_inputs + mlp.n_outputs)] input_data_test = dataset_test[:, 0:mlp.n_inputs] output_data_test = dataset_test[:, mlp.n_inputs:(mlp.n_inputs + mlp.n_outputs)] MSE_train[k_i, :], MSE_test[k_i, :] = mlp.fit( (input_data, output_data), (input_data_test, output_data_test), learning_rate=learning_rate, momentum=momentum, epochs=epochs) return (np.mean(MSE_train, axis=0), np.mean(MSE_test, axis=0))
def k_fold_cross_validation(mlp, dataset, k=5, learning_rate=0.01, momentum=0.7, epochs=100, threshold=None): MSE_train_mean = 0.0 MSE_test_mean = 0.0 parts = split_dataset(dataset, k) target_test = [] output_test = [] for k_i in np.arange(k): mlp.init_weights() training_parts = set(np.arange(k)) training_parts.remove(k_i) dataset_train = np.concatenate( [parts[i] for i in list(training_parts)]) dataset_test = parts[k_i] input_data = dataset_train[:, 0:mlp.n_inputs] output_data = dataset_train[:, mlp.n_inputs:(mlp.n_inputs + mlp.n_outputs)] input_data_test = dataset_test[:, 0:mlp.n_inputs] output_data_test = dataset_test[:, mlp.n_inputs:(mlp.n_inputs + mlp.n_outputs)] mlp.fit((input_data, output_data), learning_rate=learning_rate, momentum=momentum, epochs=epochs) MSE_train, _ = mlp.compute_MSE((input_data, output_data)) MSE_train_mean += MSE_train MSE_test, temp_out = mlp.compute_MSE( (input_data_test, output_data_test)) MSE_test_mean += MSE_test output_test.append(temp_out) target_test.append(output_data_test) target_test = np.concatenate(target_test, axis=0) output_test = np.concatenate(output_test, axis=0) if threshold is None: return (MSE_train_mean / k, MSE_test_mean / k) else: return (MSE_train_mean / k, MSE_test_mean / k, compute_confusion_matrix(target_test, output_test, threshold), target_test, output_test)
def k_fold_cross_validation(mlp, dataset, k=5, learning_rate=0.01, momentum=0.7, epochs=100, threshold=None): MSE_train_mean = 0.0 MSE_test_mean = 0.0 parts = split_dataset(dataset, k) target_test = [] output_test = [] for k_i in np.arange(k): mlp.init_weights() training_parts = set(np.arange(k)) training_parts.remove(k_i) dataset_train = np.concatenate([parts[i] for i in list(training_parts)]) dataset_test = parts[k_i] input_data = dataset_train[:,0:mlp.n_inputs] output_data = dataset_train[:,mlp.n_inputs:(mlp.n_inputs+mlp.n_outputs)] input_data_test = dataset_test[:,0:mlp.n_inputs] output_data_test = dataset_test[:,mlp.n_inputs:(mlp.n_inputs+mlp.n_outputs)] mlp.fit((input_data, output_data), learning_rate=learning_rate, momentum=momentum, epochs=epochs) MSE_train, _ = mlp.compute_MSE((input_data, output_data)) MSE_train_mean += MSE_train MSE_test, temp_out = mlp.compute_MSE((input_data_test, output_data_test)) MSE_test_mean += MSE_test output_test.append(temp_out) target_test.append(output_data_test) target_test = np.concatenate(target_test, axis=0) output_test = np.concatenate(output_test, axis=0) if threshold is None: return (MSE_train_mean / k, MSE_test_mean / k) else: return (MSE_train_mean / k, MSE_test_mean / k, compute_confusion_matrix(target_test, output_test, threshold))
def k_fold_cross_validation_per_epoch(mlp, dataset, k=5, learning_rate=0.01, momentum=0.7, epochs=100): MSE_train = np.zeros((k, epochs)) MSE_test = np.zeros((k, epochs)) parts = split_dataset(dataset, k) for k_i in np.arange(k): mlp.init_weights() training_parts = set(np.arange(k)) training_parts.remove(k_i) dataset_train = np.concatenate([parts[i] for i in list(training_parts)]) dataset_test = parts[k_i] input_data = dataset_train[:,0:mlp.n_inputs] output_data = dataset_train[:,mlp.n_inputs:(mlp.n_inputs+mlp.n_outputs)] input_data_test = dataset_test[:,0:mlp.n_inputs] output_data_test = dataset_test[:,mlp.n_inputs:(mlp.n_inputs+mlp.n_outputs)] MSE_train[k_i,:], MSE_test[k_i,:] = mlp.fit((input_data, output_data), (input_data_test, output_data_test), learning_rate=learning_rate, momentum=momentum, epochs=epochs) return (np.mean(MSE_train, axis=0), np.mean(MSE_test, axis=0))