def __init__(self, rng, input, filter_shape, image_shape, poolsize, dropout_rate): """ Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4 :param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4 :param filter_shape: (number of filters, num input feature maps, filter height, filter width) :type image_shape: tuple or list of length 4 :param image_shape: (batch size, num input feature maps, image height, image width) :type poolsize: tuple or list of length 2 :param poolsize: the downsampling (pooling) factor (#rows, #cols) """ assert image_shape[1] == filter_shape[1] self.input = input # there are "num input feature maps * filter height * filter width" # inputs to each hidden unit fan_in = numpy.prod(filter_shape[1:]) # each unit in the lower layer receives a gradient from: # "num output feature maps * filter height * filter width" / # pooling size fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)) # initialize weights with random weights W_bound = numpy.sqrt(6. / (fan_in + fan_out)) self.W = theano.shared( numpy.asarray( rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=theano.config.floatX ), borrow=True ) # the bias is a 1D tensor -- one bias per output feature map b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) self.b = theano.shared(value=b_values, borrow=True) # convolve input feature maps with filters conv_out = conv.conv2d( input=input, filters=self.W, filter_shape=filter_shape, image_shape=image_shape ) # downsample each feature map individually, using maxpooling pooled_out = downsample.max_pool_2d( input=conv_out, ds=poolsize, ignore_border=True ) # add the bias term. Since the bias is a vector (1D array), we first # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will # thus be broadcasted across mini-batches and feature map # width & height self.output = dropout(rng=rng, input=ReLu(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')), p_rate = dropout_rate) # store parameters of this layer self.params = [self.W, self.b] # keep track of model input self.input = input
def evaluate_lenet5(learning_rate=0.03, n_epochs=200, sequence="sequence_shuffle_float32.npy", labels="label_shuffle_int64.npy", nkerns=[320, 480, 960], batch_size=100): """ Demonstrates lenet on MNIST dataset :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints :param nkerns: number of kernels on each layer """ rng = numpy.random.RandomState(23455) datasets = load_data(sequence, labels) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (28, 28) is the size of MNIST images. layer0_input = dropout(rng, x.reshape((batch_size, 1, 4, 600)), p_rate=0.5) # Construct the first convolutional pooling layer: layer0 = LeNetConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 4, 600), filter_shape=(nkerns[0], 1, 4, 19), poolsize=(1, 3), dropout_rate = 0.5 ) layer1 = LeNetConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 1, 194), filter_shape=(nkerns[1], nkerns[0], 1, 11), poolsize=(1, 4), dropout_rate = 0.5 ) layer2 = LeNetConvPoolLayer( rng, input=layer1.output, image_shape=(batch_size, nkerns[1], 1, 46), filter_shape=(nkerns[2], nkerns[1], 1, 7), poolsize=(1,4), dropout_rate = 0.5 ) layer3_input = layer2.output.flatten(2) # construct a fully-connected sigmoidal layer layer3 = HiddenLayer( rng, input=layer3_input, n_in=nkerns[2] * 10 * 1, n_out=1000, dropout_rate = 0.5 ) # classify the values of the fully-connected sigmoidal layer layer4 = LogisticRegression(input=layer3.output, n_in=1000, n_out=5, dropout_rate=0.5) # the cost we minimize during training is the NLL of the model L1 = abs(layer0.W).sum()+abs(layer1.W).sum()+abs(layer2.W).sum()+abs(layer3.W).sum()+abs(layer4.W).sum() L2_sqrt = (layer0.W**2).sum()+(layer1.W**2).sum()+(layer2.W**2).sum()+(layer3.W**2).sum()+(layer4.W).sum() cost = ( layer4.negative_log_likelihood(y)+5e-07*L1+1e-08*L2_sqrt ) # # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer4.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size] } ) validate_model = theano.function( [index], layer4.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size] } ) # create a list of all model parameters to be fit by gradient descent params = layer4.params + layer3.params + layer2.params + layer1.params+layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # end-snippet-1 ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print 'training @ iter = ', iter cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [ test_model(i) for i in xrange(n_test_batches) ] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) with open("best_model.pkl","w") as f: cPickle.dump(layer0, f, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(layer1, f, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(layer2, f, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(layer3, f, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(layer4, f, protocol=cPickle.HIGHEST_PROTOCOL) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))