def train_mlp(L1_reg = 0.0, L2_reg = 0.0000, num_batches_per_bunch = 512, batch_size = 1, num_bunches_queue = 5, offset = 0, path_name = '/afs/inf.ed.ac.uk/user/s12/s1264845/scratch/s1264845/data/'): voc_list = Vocabulary(path_name + 'train') voc_list.vocab_create() vocab = voc_list.vocab vocab_size = voc_list.vocab_size voc_list_valid = Vocabulary(path_name + 'valid') voc_list_valid.vocab_create() valid_words_count = voc_list_valid.count #print valid_words_count valid_lines_count = voc_list_valid.line_count #print valid_lines_count voc_list_test = Vocabulary(path_name + 'test') voc_list_test.vocab_create() test_words_count = voc_list_test.count #print test_words_count test_lines_count = voc_list_test.line_count #print test_lines_count dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size ) dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size ) dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size ) #exp_name = 'fine_tuning.hdf5' print '..building the model' #symbolic variables for input, target vector and batch index index = T.lscalar('index') x = T.fvector('x') y = T.ivector('y') learning_rate = T.fscalar('learning_rate') #theano shared variables for train, valid and test train_set_x = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) train_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) valid_set_x = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) valid_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) test_set_x = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) test_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) rng = numpy.random.RandomState() classifier = MLP(rng = rng, input = x, n_in = vocab_size, fea_dim = 30, context_size = 2, n_hidden = 60 , n_out = vocab_size) cost = classifier.negative_log_likelihood(y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr #constructor for learning rate class learnrate_schedular = LearningRateNewBob(start_rate=0.005, scale_by=.5, max_epochs=9999,\ min_derror_ramp_start=.01, min_derror_stop=.01, init_error=100.) #learnrate_schedular = LearningRateList(learn_list) frame_error = classifier.errors(y) likelihood = classifier.sum(y) #test_model test_model = theano.function(inputs = [], outputs = likelihood, \ givens = {x: test_set_x, y: test_set_y}) #validation_model validate_model = theano.function(inputs = [], outputs = [frame_error, likelihood], \ givens = {x: valid_set_x, y: valid_set_y}) gradient_param = [] #calculates the gradient of cost with respect to parameters for param in classifier.params: gradient_param.append(T.cast(T.grad(cost, param), 'float32')) updates = [] #updates the parameters for param, gradient in zip(classifier.params, gradient_param): updates.append((param, param - learning_rate * gradient)) #training_model train_model = theano.function(inputs = [theano.Param(learning_rate, default = 0.01)], outputs = cost, updates = updates, \ givens = {x: train_set_x, y: train_set_y}) training(dataprovider_train, dataprovider_valid, learnrate_schedular, classifier, train_model, validate_model, train_set_x, train_set_y, valid_set_x, valid_set_y, batch_size, num_batches_per_bunch, valid_words_count, valid_lines_count) testing(dataprovider_test, classifier, test_model, test_set_x, test_set_y, test_words_count, test_lines_count)
def train_mlp(feature_dimension, context, hidden_size, weight_path, file_name1, file_name2, file_name3, L1_reg = 0.0, L2_reg = 0.0000, path_name = '/exports/work/inf_hcrc_cstr_udialogue/siva/data/'): #voc_list = Vocabulary(path_name + 'train_modified1') #voc_list.vocab_create() #vocab = voc_list.vocab #vocab_size = voc_list.vocab_size #short_list = voc_list.short_list #short_list_size = voc_list.short_list_size #path = '/exports/work/inf_hcrc_cstr_udialogue/siva/data_normalization/vocab/wlist5c.nvp' voc_list = Vocabularyhash('/exports/work/inf_hcrc_cstr_udialogue/siva/data_normalization/vocab/wlist5c.nvp') voc_list.hash_create() vocab = voc_list.voc_hash vocab_size = voc_list.vocab_size #dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size, short_list ) #dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size, short_list ) #dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size , short_list) dataprovider_train = DataProvider(path_name + 'train_modified1_20m', vocab, vocab_size) dataprovider_valid = DataProvider(path_name + 'valid_modified1', vocab, vocab_size) dataprovider_test = DataProvider(path_name + 'test_modified1', vocab, vocab_size) print '..building the model' #symbolic variables for input, target vector and batch index index = T.lscalar('index') x1 = T.fvector('x1') x2 = T.fvector('x2') y = T.ivector('y') learning_rate = T.fscalar('learning_rate') #theano shared variables for train, valid and test train_set_x1 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) train_set_x2 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) train_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) valid_set_x1 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) valid_set_x2 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) valid_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) test_set_x1 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) test_set_x2 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) test_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) rng = numpy.random.RandomState() classifier = MLP(rng = rng, input1 = x1, input2 = x2, n_in = vocab_size, fea_dim = int(feature_dimension), context_size = int(context), n_hidden =int(hidden_size), n_out = vocab_size) cost = classifier.negative_log_likelihood(y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr #constructor for learning rate class learnrate_schedular = LearningRateNewBob(start_rate=0.005, scale_by=.5, max_epochs=9999,\ min_derror_ramp_start=.01, min_derror_stop=.01, init_error=100.) frame_error = classifier.errors(y) log_likelihood = classifier.sum(y) likelihood = classifier.likelihood(y) #test_model test_model = theano.function(inputs = [], outputs = [log_likelihood, likelihood], \ givens = {x1: test_set_x1, x2: test_set_x2, y: test_set_y}) #validation_model validate_model = theano.function(inputs = [], outputs = [frame_error, log_likelihood], \ givens = {x1: valid_set_x1, x2: valid_set_x2, y: valid_set_y}) gradient_param = [] #calculates the gradient of cost with respect to parameters for param in classifier.params: gradient_param.append(T.cast(T.grad(cost, param), 'float32')) updates = [] #updates the parameters for param, gradient in zip(classifier.params, gradient_param): updates.append((param, param - learning_rate * gradient)) #training_model train_model = theano.function(inputs = [learning_rate], outputs = [cost], updates = updates, \ givens = {x1: train_set_x1, x2: train_set_x2, y: train_set_y}) print '.....training' best_valid_loss = numpy.inf start_time = time.time() while(learnrate_schedular.get_rate() != 0): print 'learning_rate:', learnrate_schedular.get_rate() print 'epoch_number:', learnrate_schedular.epoch frames_showed, progress = 0, 0 start_epoch_time = time.time() dataprovider_train.reset() for feats_lab_tuple in dataprovider_train: features, labels = feats_lab_tuple if labels is None or features is None: continue frames_showed += features.shape[0] for temp, i in zip(features, xrange(len(labels))): temp_features1 = numpy.zeros(vocab_size, dtype = 'float32') temp_features2 = numpy.zeros(vocab_size, dtype = 'float32') temp_features1[temp[0]] = 1 temp_features2[temp[1]] = 1 train_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True) train_set_x2.set_value(numpy.asarray(temp_features2, dtype = 'float32'), borrow = True) train_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True) out = train_model(numpy.array(learnrate_schedular.get_rate(), dtype = 'float32')) progress += 1 if progress%10000==0: end_time_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, frames_showed,(end_time_progress-start_epoch_time)) train_set_x1.set_value(numpy.empty((1), dtype = 'float32')) train_set_x2.set_value(numpy.empty((1), dtype = 'float32')) train_set_y.set_value(numpy.empty((1), dtype = 'int32')) end_time_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, frames_showed,(end_time_progress-start_epoch_time)) classifier_name = 'MLP' + str(learnrate_schedular.epoch) save_mlp(classifier, weight_path+file_name1 , classifier_name) save_learningrate(learnrate_schedular.get_rate(), weight_path+file_name3, classifier_name) print 'Validating...' valid_losses = [] log_likelihood = [] valid_frames_showed, progress = 0, 0 start_valid_time = time.time() # it is also stop of training time dataprovider_valid.reset() for feats_lab_tuple in dataprovider_valid: features, labels = feats_lab_tuple if labels is None or features is None: continue valid_frames_showed += features.shape[0] for temp, i in zip(features, xrange(len(labels))): temp_features1 = numpy.zeros(vocab_size, dtype = 'float32') temp_features2 = numpy.zeros(vocab_size, dtype = 'float32') temp_features1[temp[0]] = 1 temp_features2[temp[1]] = 1 valid_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True) valid_set_x2.set_value(numpy.asarray(temp_features2, dtype = 'float32'), borrow = True) valid_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True) out = validate_model() error_rate = out[0] likelihoods = out[1] valid_losses.append(error_rate) log_likelihood.append(likelihoods) valid_set_x1.set_value(numpy.empty((1), 'float32')) valid_set_x2.set_value(numpy.empty((1), 'float32')) valid_set_y.set_value(numpy.empty((1), 'int32')) progress += 1 if progress%1000==0: end_time_valid_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time) end_time_valid_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time) this_validation_loss = numpy.mean(valid_losses) entropy = (-numpy.sum(log_likelihood)/valid_frames_showed) print this_validation_loss, entropy, numpy.sum(log_likelihood) if entropy < best_valid_loss: learning_rate = learnrate_schedular.get_next_rate(entropy) best_valid_loss = entropy else: learnrate_schedular.rate = 0.0 end_time = time.time() print 'The fine tuning ran for %.2fm' %((end_time-start_time)/60.) print 'Testing...' log_likelihood = [] likelihoods = [] test_frames_showed, progress = 0, 0 start_test_time = time.time() # it is also stop of training time dataprovider_test.reset() for feats_lab_tuple in dataprovider_test: features, labels = feats_lab_tuple if labels is None or features is None: continue test_frames_showed += features.shape[0] for temp, i in zip(features, xrange(len(labels))): temp_features1 = numpy.zeros(vocab_size, dtype = 'float32') temp_features2 = numpy.zeros(vocab_size, dtype = 'float32') temp_features1[temp[0]] = 1 temp_features2[temp[1]] = 1 test_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True) test_set_x2.set_value(numpy.asarray(temp_features2, dtype = 'float32'), borrow = True) test_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True) out = test_model() log_likelihood.append(out[0]) likelihoods.append(out[1]) progress += 1 if progress%1000==0: end_time_test_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, test_frames_showed, end_time_test_progress - start_test_time) end_time_test_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, test_frames_showed, end_time_test_progress - start_test_time) save_posteriors(log_likelihood, likelihoods, weight_path+file_name2) print numpy.sum(log_likelihood) likelihood_sum = (-numpy.sum(log_likelihood)/test_frames_showed) print 'entropy:', likelihood_sum
def testing_tunedweights(path, feature_dimension, context, hidden_size, weight_path, file_name1, model_number): x1 = T.fvector('x1') x2 = T.fvector('x2') y = T.ivector('y') #voc_list = Vocabulary(path + 'train_modified1') #voc_list.vocab_create() #vocab = voc_list.vocab #vocab_size = voc_list.vocab_size #short_list = voc_list.short_list #short_list_size = voc_list.short_list_size voc_list = Vocabularyhash('/exports/work/inf_hcrc_cstr_udialogue/siva/data_normalization/vocab/wlist5c.nvp') voc_list.hash_create() vocab = voc_list.voc_hash vocab_size = voc_list.vocab_size dataprovider_test = DataProvider(path + 'test_modified1_1m', vocab, vocab_size) #dataprovider_test = DataProvider(path + 'test', vocab, vocab_size , short_list) test_set_x1 = theano.shared(numpy.empty((1), dtype='float32')) test_set_x2 = theano.shared(numpy.empty((1), dtype='float32')) test_set_y = theano.shared(numpy.empty((1), dtype = 'int32')) rng = numpy.random.RandomState() classifier = MLP(rng = rng, input1 = x1, input2 = x2, n_in = vocab_size, fea_dim = int(feature_dimension), context_size = int(context), n_hidden = int(hidden_size) , n_out = vocab_size) log_likelihood = classifier.sum(y) likelihood = classifier.likelihood(y) #test_model test_model = theano.function(inputs = [], outputs = [log_likelihood, likelihood], \ givens = {x1: test_set_x1, x2: test_set_x2, y: test_set_y}) classifier_name = 'MLP' + str(model_number) f = h5py.File(weight_path+file_name1, "r") for i in xrange(0, classifier.no_of_layers, 2): path_modified = '/' + classifier_name + '/layer' + str(i/2) if i == 4: classifier.params[i].set_value(numpy.asarray(f[path_modified + "/W"].value, dtype = 'float32'), borrow = True) else: classifier.params[i].set_value(numpy.asarray(f[path_modified + "/W"].value, dtype = 'float32'), borrow = True) classifier.params[i + 1].set_value(numpy.asarray(f[path_modified + "/b"].value, dtype = 'float32'), borrow = True) f.close() print 'Testing...' log_likelihood = [] likelihoods = [] test_frames_showed, progress = 0, 0 start_test_time = time.time() # it is also stop of training time dataprovider_test.reset() for feats_lab_tuple in dataprovider_test: features, labels = feats_lab_tuple if labels is None or features is None: continue test_frames_showed += features.shape[0] for temp, i in zip(features, xrange(len(labels))): temp_features1 = numpy.zeros(vocab_size, dtype = 'float32') temp_features2 = numpy.zeros(vocab_size, dtype = 'float32') temp_features1[temp[0]] = 1 temp_features2[temp[1]] = 1 test_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True) test_set_x2.set_value(numpy.asarray(temp_features2, dtype = 'float32'), borrow = True) test_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True) out = test_model() log_likelihood.append(out[0]) likelihoods.append(out[1]) progress += 1 if progress%1000==0: end_time_test_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, test_frames_showed, end_time_test_progress - start_test_time) end_time_test_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, test_frames_showed, end_time_test_progress - start_test_time) #save_posteriors(log_likelihood, likelihoods, path_name+exp_name2) print numpy.sum(log_likelihood) entropy = (-numpy.sum(log_likelihood)/test_frames_showed) print 'entropy', entropy
def train_mlp(feature_dimension, context, hidden_size, weight_path, file_name1, file_name3, learn_rate, epoch, valid_loss, L1_reg = 0.0, L2_reg = 0.0000, path_name = '/exports/work/inf_hcrc_cstr_udialogue/siva/data/'): #voc_list = Vocabulary(path_name + 'train') #voc_list.vocab_create() #vocab = voc_list.vocab #vocab_size = voc_list.vocab_size #short_list = voc_list.short_list #short_list_size = voc_list.short_list_size voc_list = Vocabularyhash('/exports/work/inf_hcrc_cstr_udialogue/siva/data_normalization/vocab/wlist5c.nvp') voc_list.hash_create() vocab = voc_list.voc_hash vocab_size = voc_list.vocab_size #dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size, short_list ) #dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size, short_list ) #dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size , short_list) #dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size) #dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size) #dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size) dataprovider_train = DataProvider(path_name + 'train_modified1_20m', vocab, vocab_size) dataprovider_valid = DataProvider(path_name + 'valid_modified1', vocab, vocab_size) dataprovider_test = DataProvider(path_name + 'test_modified1', vocab, vocab_size) #exp_name1 = 'fine_tuning.h5' #exp_name2 = 'posteriors.h5' #path = weight_path print '..building the model' #symbolic variables for input, target vector and batch index index = T.lscalar('index') x1 = T.fvector('x1') x2 = T.fvector('x2') y = T.ivector('y') learning_rate = T.fscalar('learning_rate') #theano shared variables for train, valid and test train_set_x1 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) train_set_x2 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) train_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) valid_set_x1 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) valid_set_x2 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) valid_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) test_set_x1 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) test_set_x2 = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast = True) test_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True) rng = numpy.random.RandomState() classifier = MLP(rng = rng, input1 = x1, input2 = x2, n_in = vocab_size, fea_dim = int(feature_dimension), context_size = int(context), n_hidden =int(hidden_size) , n_out = vocab_size) cost = classifier.negative_log_likelihood(y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr #constructor for learning rate class learnrate_schedular = LearningRateNewBob(start_rate = float(learn_rate), scale_by=.5, max_epochs=9999,\ min_derror_ramp_start=.01, min_derror_stop=.01, init_error = float(valid_loss), epoch_number = int(epoch)) frame_error = classifier.errors(y) log_likelihood = classifier.sum(y) likelihood = classifier.likelihood(y) #test_model test_model = theano.function(inputs = [], outputs = [log_likelihood, likelihood], \ givens = {x1: test_set_x1, x2: test_set_x2, y: test_set_y}) #validation_model validate_model = theano.function(inputs = [], outputs = [frame_error, log_likelihood], \ givens = {x1: valid_set_x1, x2: valid_set_x2, y: valid_set_y}) gradient_param = [] #calculates the gradient of cost with respect to parameters for param in classifier.params: gradient_param.append(T.cast(T.grad(cost, param), 'float32')) updates = [] #updates the parameters for param, gradient in zip(classifier.params, gradient_param): updates.append((param, param - learning_rate * gradient)) #training_model train_model = theano.function(inputs = [learning_rate], outputs = [cost], updates = updates, \ givens = {x1: train_set_x1, x2: train_set_x2, y: train_set_y}) f = h5py.File(weight_path+file_name1, "r") for i in xrange(0, classifier.no_of_layers, 2): path_modified = '/' + 'MLP'+ str(10) + '/layer' + str(i/2) if i == 4: classifier.params[i].set_value(numpy.asarray(f[path_modified + "/W"].value, dtype = 'float32'), borrow = True) else: classifier.params[i].set_value(numpy.asarray(f[path_modified + "/W"].value, dtype = 'float32'), borrow = True) classifier.params[i + 1].set_value(numpy.asarray(f[path_modified + "/b"].value, dtype = 'float32'), borrow = True) f.close() print '.....training' #best_valid_loss = numpy.inf best_valid_loss = float(valid_loss) start_time = time.time() while(learnrate_schedular.get_rate() != 0): print 'learning_rate:', learnrate_schedular.get_rate() print 'epoch_number:', learnrate_schedular.epoch frames_showed, progress = 0, 0 start_epoch_time = time.time() dataprovider_train.reset() for feats_lab_tuple in dataprovider_train: features, labels = feats_lab_tuple if labels is None or features is None: continue frames_showed += features.shape[0] for temp, i in zip(features, xrange(len(labels))): temp_features1 = numpy.zeros(vocab_size, dtype = 'float32') temp_features2 = numpy.zeros(vocab_size, dtype = 'float32') temp_features1[temp[0]] = 1 temp_features2[temp[1]] = 1 train_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True) train_set_x2.set_value(numpy.asarray(temp_features2, dtype = 'float32'), borrow = True) train_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True) out = train_model(numpy.array(learnrate_schedular.get_rate(), dtype = 'float32')) progress += 1 if progress%10000==0: end_time_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, frames_showed,(end_time_progress-start_epoch_time)) train_set_x1.set_value(numpy.empty((1), dtype = 'float32')) train_set_x2.set_value(numpy.empty((1), dtype = 'float32')) train_set_y.set_value(numpy.empty((1), dtype = 'int32')) end_time_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, frames_showed,(end_time_progress-start_epoch_time)) classifier_name = 'MLP' + str(learnrate_schedular.epoch) save_mlp(classifier, weight_path+file_name1 , classifier_name) save_learningrate(learnrate_schedular.get_rate(), weight_path+file_name3, classifier_name) print 'Validating...' valid_losses = [] log_likelihood = [] valid_frames_showed, progress = 0, 0 start_valid_time = time.time() # it is also stop of training time dataprovider_valid.reset() for feats_lab_tuple in dataprovider_valid: features, labels = feats_lab_tuple if labels is None or features is None: continue valid_frames_showed += features.shape[0] for temp, i in zip(features, xrange(len(labels))): temp_features1 = numpy.zeros(vocab_size, dtype = 'float32') temp_features2 = numpy.zeros(vocab_size, dtype = 'float32') temp_features1[temp[0]] = 1 temp_features2[temp[1]] = 1 valid_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True) valid_set_x2.set_value(numpy.asarray(temp_features2, dtype = 'float32'), borrow = True) valid_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True) out = validate_model() error_rate = out[0] likelihoods = out[1] valid_losses.append(error_rate) log_likelihood.append(likelihoods) valid_set_x1.set_value(numpy.empty((1), 'float32')) valid_set_x2.set_value(numpy.empty((1), 'float32')) valid_set_y.set_value(numpy.empty((1), 'int32')) progress += 1 if progress%1000==0: end_time_valid_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time) end_time_valid_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time) this_validation_loss = numpy.mean(valid_losses) entropy = (-numpy.sum(log_likelihood)/valid_frames_showed) print this_validation_loss, entropy, numpy.sum(log_likelihood) if entropy < best_valid_loss: learning_rate = learnrate_schedular.get_next_rate(entropy) best_valid_loss = entropy else: learnrate_schedular.rate = 0.0 end_time = time.time() print 'The fine tuning ran for %.2fm' %((end_time-start_time)/60.) print 'Testing...' log_likelihood = [] likelihoods = [] test_frames_showed, progress = 0, 0 start_test_time = time.time() # it is also stop of training time dataprovider_test.reset() for feats_lab_tuple in dataprovider_test: features, labels = feats_lab_tuple if labels is None or features is None: continue test_frames_showed += features.shape[0] for temp, i in zip(features, xrange(len(labels))): temp_features1 = numpy.zeros(vocab_size, dtype = 'float32') temp_features2 = numpy.zeros(vocab_size, dtype = 'float32') temp_features1[temp[0]] = 1 temp_features2[temp[1]] = 1 test_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True) test_set_x2.set_value(numpy.asarray(temp_features2, dtype = 'float32'), borrow = True) test_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True) out = test_model() log_likelihood.append(out[0]) likelihoods.append(out[1]) progress += 1 if progress%1000==0: end_time_test_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, test_frames_showed, end_time_test_progress - start_test_time) end_time_test_progress = time.time() print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\ %(progress, test_frames_showed, end_time_test_progress - start_test_time) #save_posteriors(log_likelihood, likelihoods, weight_path+file_name2) print numpy.sum(log_likelihood) likelihood_sum = (-numpy.sum(log_likelihood)/test_frames_showed) print 'entropy:', likelihood_sum
def train_mlp( L1_reg=0.0, L2_reg=0.0000, num_batches_per_bunch=512, batch_size=1, num_bunches_queue=5, offset=0, path_name='/afs/inf.ed.ac.uk/user/s12/s1264845/scratch/s1264845/data/' ): voc_list = Vocabulary(path_name + 'train') voc_list.vocab_create() vocab = voc_list.vocab vocab_size = voc_list.vocab_size voc_list_valid = Vocabulary(path_name + 'valid') voc_list_valid.vocab_create() valid_words_count = voc_list_valid.count #print valid_words_count valid_lines_count = voc_list_valid.line_count #print valid_lines_count voc_list_test = Vocabulary(path_name + 'test') voc_list_test.vocab_create() test_words_count = voc_list_test.count #print test_words_count test_lines_count = voc_list_test.line_count #print test_lines_count dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size) dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size) dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size) #exp_name = 'fine_tuning.hdf5' print '..building the model' #symbolic variables for input, target vector and batch index index = T.lscalar('index') x = T.fvector('x') y = T.ivector('y') learning_rate = T.fscalar('learning_rate') #theano shared variables for train, valid and test train_set_x = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast=True) train_set_y = theano.shared(numpy.empty((1), dtype='int32'), allow_downcast=True) valid_set_x = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast=True) valid_set_y = theano.shared(numpy.empty((1), dtype='int32'), allow_downcast=True) test_set_x = theano.shared(numpy.empty((1), dtype='float32'), allow_downcast=True) test_set_y = theano.shared(numpy.empty((1), dtype='int32'), allow_downcast=True) rng = numpy.random.RandomState() classifier = MLP(rng=rng, input=x, n_in=vocab_size, fea_dim=30, context_size=2, n_hidden=60, n_out=vocab_size) cost = classifier.negative_log_likelihood( y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr #constructor for learning rate class learnrate_schedular = LearningRateNewBob(start_rate=0.005, scale_by=.5, max_epochs=9999,\ min_derror_ramp_start=.01, min_derror_stop=.01, init_error=100.) #learnrate_schedular = LearningRateList(learn_list) frame_error = classifier.errors(y) likelihood = classifier.sum(y) #test_model test_model = theano.function(inputs = [], outputs = likelihood, \ givens = {x: test_set_x, y: test_set_y}) #validation_model validate_model = theano.function(inputs = [], outputs = [frame_error, likelihood], \ givens = {x: valid_set_x, y: valid_set_y}) gradient_param = [] #calculates the gradient of cost with respect to parameters for param in classifier.params: gradient_param.append(T.cast(T.grad(cost, param), 'float32')) updates = [] #updates the parameters for param, gradient in zip(classifier.params, gradient_param): updates.append((param, param - learning_rate * gradient)) #training_model train_model = theano.function(inputs = [theano.Param(learning_rate, default = 0.01)], outputs = cost, updates = updates, \ givens = {x: train_set_x, y: train_set_y}) training(dataprovider_train, dataprovider_valid, learnrate_schedular, classifier, train_model, validate_model, train_set_x, train_set_y, valid_set_x, valid_set_y, batch_size, num_batches_per_bunch, valid_words_count, valid_lines_count) testing(dataprovider_test, classifier, test_model, test_set_x, test_set_y, test_words_count, test_lines_count)