def RunLinearRegressionMlpy(q):
            totalTimer = Timer()

            # Load input dataset.
            # If the dataset contains two files then the second file is the test file.
            Log.Info("Loading dataset", self.verbose)
            if len(self.dataset) >= 2:
                test_data = np.genfromtxt(self.dataset[1], delimiter=',')

            # Use the last row of the training set as the responses.
            X, y = SplitTrainData(self.dataset[0])

            try:
                with totalTimer:
                    # Perform linear regression.
                    model = mlpy.OLS()
                    model.learn(X, y)
                    b = model.beta()

                    if len(self.dataset) >= 2:
                        #prediction on the test data.
                        pred = model.pred(test_data)
            except Exception as e:
                q.put(-1)
                return -1

            time = totalTimer.ElapsedTime()
            q.put(time)

            if len(self.dataset) >= 2:
                np.savetxt("mlpy_lr_predictions.csv", pred, delimiter="\n")

            return time
Exemple #2
0
    def RunLinearRegressionMlpy(q):
      totalTimer = Timer()

      # Load input dataset.
      # If the dataset contains two files then the second file is the responses
      # file.
      Log.Info("Loading dataset", self.verbose)
      if len(self.dataset) == 2:
        X = np.genfromtxt(self.dataset[0], delimiter=',')
        y = np.genfromtxt(self.dataset[1], delimiter=',')
      else:
        X = np.genfromtxt(self.dataset, delimiter=',')
        y = X[:, (X.shape[1] - 1)]
        X = X[:,:-1]

      try:
        with totalTimer:
          # Perform linear regression.
          model = mlpy.OLS()
          model.learn(X, y)
          b =  model.beta()
      except Exception as e:
        q.put(-1)
        return -1

      time = totalTimer.ElapsedTime()
      q.put(time)
      return time
    def __init__(self, file_name, flag):

        if flag == "ridge":
            self.lrs = [mlpy.Ridge() for i in range(7)]
        else:
            self.lrs = [mlpy.OLS() for i in range(7)]

        self.file_name = file_name

        self.x_weekday = dict()
        self.y_weekday = dict()
def regression_linear(x,y):
    '''
        Estimate a linear regression
    '''
    # create the model object
    ols = ml.OLS()

    # estimate the model
    ols.learn(x, y)

    # and return the fit model
    return ols
 def BuildModel(self, data, responses):
     # Create and train the classifier.
     model = mlpy.OLS()
     model.learn(data, responses)
     return model