def __init__(self,Gs,ls):
     self._K = ls.shape[1]
     self._Gs = Gs
     self._N = Gs.shape[1]
     self._ls = ls
     self._svm = LibSvm('c_svc','rbf',\
         gamma=1.0/self._N,C=100,probability=True)                
Exemple #2
0
 def BuildModel(self, data, labels):
   # Create and train the classifier.
   svm = LibSvm(kernel_type=self.kernel,
                C=self.C,
                gamma=self.gamma)
   svm.learn(data, labels)
   return svm
def bench_mlpy(X, y, T, valid):
#
#       .. MLPy ..
#
    from mlpy import LibSvm
    start = datetime.now()
    clf = LibSvm(kernel_type='rbf', C=1., gamma=1. / sigma)
    clf.learn(X, y.astype(np.float64))
    score = np.mean(clf.pred(T) == valid)
    return score, datetime.now() - start
Exemple #4
0
    def __init__(self, config):
        self.config = config
        self.commands = {}
        self.command_names = {}
        commands_folder = self.config['commands_folder']
        for index, command_name in enumerate(os.listdir(commands_folder)):
            cmd = Command(command_name, index,
                          os.path.join(commands_folder, command_name))
            self.commands[command_name] = cmd
            self.command_names[index] = command_name

        self.svm = LibSvm(svm_type='c_svc', kernel_type='linear')
        x, y = [], []
        for command in self.commands.itervalues():
            for feature in command.objects:
                x.append(feature)
                y.append(command.index)
        self.svm.learn(x, y)
Exemple #5
0
    def metric(self):
        totalTimer = Timer()
        with totalTimer:
            model = LibSvm(**self.build_opts)
            model.learn(self.data_split[0], self.data_split[1])

            if len(self.data) >= 2:
                predictions = model.pred(self.data[1])

        metric = {}
        metric["runtime"] = totalTimer.ElapsedTime()

        if len(self.data) == 3:
            confusionMatrix = Metrics.ConfusionMatrix(self.data[2],
                                                      predictions)
            metric['ACC'] = Metrics.AverageAccuracy(confusionMatrix)
            metric['MCC'] = Metrics.MCCMultiClass(confusionMatrix)
            metric['Precision'] = Metrics.AvgPrecision(confusionMatrix)
            metric['Recall'] = Metrics.AvgRecall(confusionMatrix)
            metric['MSE'] = Metrics.SimpleMeanSquaredError(
                self.data[2], predictions)

        return metric