def assign_primaries2(primaries, clusts, data):
    """
    for each EM primary assign closest cluster that matches batch and group
    data should contain groups of voxels
    
    this version does not filter out compton clusters first
    """

    primaries = primaries.cpu()
    data = data.cpu()

    labels = get_cluster_label(data, clusts)
    batches = get_cluster_batch(data, clusts)

    assn = []
    for primary in primaries:
        # get list of indices that match label and batch
        pbatch = primary[-2]
        # plabel = primary[-1]
        # pselection = np.logical_and(labels == plabel, batches == pbatch)
        pselection = batches == pbatch
        pinds = np.where(pselection)[0]  # indices to compare against
        if len(pinds) < 1:
            continue

        scores = score_clusters_primary(clusts[pinds], data, labels[pinds],
                                        primary)
        ind = np.argmin(scores)
        # print(scores[ind])
        assn.append(pinds[ind])
    return assn
Exemple #2
0
    def forward(self, data):
        """
        Input:
            data[0]: (Nx5) Cluster tensor with row (x, y, z, batch_id, cluster_id)
        Output:
        dictionary, with
            'node_pred': torch.tensor with node prediction weights
        """
        # Get device
        cluster_label = data[0]
        device = cluster_label.device

        # Find index of points that belong to the same EM clusters
        clusts = form_clusters_new(cluster_label)

        # If requested, remove clusters below a certain size threshold
        if self.remove_compton:
            selection = np.where(filter_compton(clusts,
                                                self.compton_thresh))[0]
            if not len(selection):
                return self.default_return(device)
            clusts = clusts[selection]

        # Get the cluster ids of each processed cluster
        clust_ids = get_cluster_label(cluster_label, clusts)

        # Get the batch ids of each cluster
        batch_ids = get_cluster_batch(cluster_label, clusts)

        # Form a complete graph (should add options for other structures, TODO)
        edge_index = complete_graph(batch_ids, device=device)
        if not edge_index.shape[0]:
            return self.default_return(device)

        # Obtain vertex features
        x = cluster_vtx_features(cluster_label, clusts, device=device)

        # Obtain edge features
        e = cluster_edge_features(cluster_label,
                                  clusts,
                                  edge_index,
                                  device=device)

        # Convert the the batch IDs to a torch tensor to pass to Torch
        xbatch = torch.tensor(batch_ids).to(device)

        # Pass through the model, get output
        out = self.node_predictor(x, edge_index, e, xbatch)

        return {
            **out, 'clust_ids': [torch.tensor(clust_ids)],
            'batch_ids': [torch.tensor(batch_ids)],
            'edge_index': [edge_index]
        }
Exemple #3
0
def assign_primaries(primaries,
                     clusts,
                     data,
                     use_labels=False,
                     max_dist=None,
                     compton_thresh=0):
    """
    for each EM primary assign closest cluster that matches batch and group
    data should contain groups of voxels
    """

    primaries = primaries.cpu().detach().numpy()
    data = data.cpu().detach().numpy()

    #first remove compton-like clusters from list
    selection = filter_compton(clusts,
                               compton_thresh)  # non-compton looking clusters
    selinds = np.where(selection)[0]  # selected indices
    cs2 = clusts[selinds]
    # if everything looks compton, say no primaries
    if len(cs2) < 1:
        return []

    if use_labels:
        labels = get_cluster_label(data, cs2)
    batches = get_cluster_batch(data, cs2)

    assn = []
    for primary in primaries:
        # get list of indices that match label and batch
        pbatch = primary[-2]
        if use_labels:
            plabel = primary[-1]
            pselection = np.logical_and(labels == plabel, batches == pbatch)
        else:
            pselection = batches == pbatch
        pinds = np.where(pselection)[0]  # indices to compare against
        if len(pinds) < 1:
            continue

        scores = score_clusters_primary(cs2[pinds], data, primary)
        ind = np.argmin(scores)
        if max_dist and scores[ind] > max_dist:
            continue
        # print(scores[ind])
        assn.append(selinds[pinds[ind]])

    # assignments may not be unique
    assn = np.unique(assn)
    return assn
Exemple #4
0
def assign_primaries_unique(primaries, clusts, data, use_labels=False):
    """
    for each EM primary assign closest cluster that matches batch and group
    data should contain groups of voxels
    """
    #first remove compton-like clusters from list
    cs2 = clusts
    #     selection = filter_compton(clusts) # non-compton looking clusters
    #     selinds = np.where(selection)[0] # selected indices
    #     cs2 = clusts[selinds]
    # if everything looks compton, say no primaries
    if len(cs2) < 1:
        return []

    labels = get_cluster_label(data, cs2)
    batches = get_cluster_batch(data, cs2)

    assn = -1 * np.ones(len(primaries))
    assn_scores = -1 * np.ones(len(primaries))
    for i in range(len(primaries)):
        primary = primaries[i]
        # get list of indices that match label and batch
        pbatch = primary[-2]
        if use_labels:
            plabel = primary[-1]
            pselection = np.logical_and(labels == plabel, batches == pbatch)
        else:
            pselection = batches == pbatch
        pinds = np.where(pselection)[0]  # indices to compare against
        if len(pinds) < 1:
            continue

        scores = score_clusters_primary(cs2[pinds], data, primary)
        ind = np.argmin(scores)
        pind = pinds[ind]
        score = scores[ind]

        already_assigned = np.where(assn == pind)[0]
        if len(already_assigned) > 0:
            current_low = assn_scores[already_assigned][0]
            if score < current_low:
                assn_scores[already_assigned] = -1.0
                assn[already_assigned] = -1.0
            else:
                continue
        assn_scores[i] = score
        assn[i] = pind
    return assn
def assign_primaries3(primaries, clusts, data):
    """
    for each EM primary assign closest cluster that matches batch and group
    data should contain groups of voxels
    """

    #first remove compton-like clusters from list
    cs2 = clusts
    #     selection = filter_compton(clusts) # non-compton looking clusters
    #     selinds = np.where(selection)[0] # selected indices
    #     cs2 = clusts[selinds]
    # if everything looks compton, say no primaries
    if len(cs2) < 1:
        return []

    labels = get_cluster_label(data, cs2)
    batches = get_cluster_batch(data, cs2)

    assn = []
    for primary in primaries:
        # get list of indices that match label and batch
        pbatch = primary[-2]
        plabel = primary[-1]
        pselection = np.logical_and(labels == plabel, batches == pbatch)
        pinds = np.where(pselection)[0]  # indices to compare against
        if len(pinds) < 1:
            assn.append(-1)
            continue

        scores = score_clusters_primary(cs2[pinds], data, labels[pinds],
                                        primary)
        ind = np.argmin(scores)
        # print(scores[ind])
        #         assn.append(selinds[pinds[ind]])
        assn.append(pinds[ind])
    return assn
Exemple #6
0
    def forward(self, out, clusters, groups, primary):
        """
        out:
            array output from the DataParallel gather function
            out[0] - n_gpus tensors of edge indexes
            out[1] - n_gpus tensors of predicted edge weights from model forward
            out[2] - n_gpus arrays of group ids for each cluster
            out[3] - n_gpus number of iterations
        data:
            cluster_labels - n_gpus Nx5 tensors of (x, y, z, batch_id, cluster_id)
            group_labels - n_gpus Nx5 tensors of (x, y, z, batch_id, group_id) 
            em_primaries - n_gpus tensor of (x, y, z) coordinates of origins of EM primaries
        """
        total_loss, total_acc, total_primary_fdr, total_primary_acc, total_iter = 0., 0., 0., 0., 0
        ngpus = len(clusters)
        for i in range(ngpus):
            data0 = clusters[i]
            data1 = groups[i]
            data2 = primary[i]

            clusts = form_clusters_new(data0)

            # remove compton clusters
            # if no cluster fits this condition, return
            if self.remove_compton:
                selection = filter_compton(
                    clusts)  # non-compton looking clusters
                if not len(selection):
                    edge_pred = out[1][i]
                    total_loss += self.lossfn(edge_pred, edge_pred)
                    total_acc += 1.
                    continue

            clusts = clusts[selection]

            # process group data
            data_grp = data1

            # form primary/secondary bipartite graph
            primaries = assign_primaries(data2, clusts, data0)
            batch = get_cluster_batch(data0, clusts)
            # edge_index = primary_bipartite_incidence(batch, primaries)
            group = get_cluster_label(data_grp, clusts)

            primaries_true = assign_primaries(data2,
                                              clusts,
                                              data1,
                                              use_labels=True)
            primary_fdr, primary_tdr, primary_acc = analyze_primaries(
                primaries, primaries_true)
            total_primary_fdr += primary_fdr
            total_primary_acc += primary_acc

            niter = out[3][i][0]  # number of iterations
            total_iter += niter
            for j in range(niter):
                # determine true assignments
                edge_index = out[0][i][j]
                edge_assn = edge_assignment(edge_index,
                                            batch,
                                            group,
                                            cuda=True)

                edge_pred = out[1][i][j]
                # print(edge_pred)

                # print(edge_assn.shape)
                # print(edge_pred.shape)
                edge_assn = edge_assn.view(-1)
                edge_pred = edge_pred.view(-1)
                # print(edge_assn.shape)
                # print(edge_pred.shape)

                if self.balance:
                    edge_assn, edge_pred = self.balance_classes(
                        edge_assn, edge_pred)

                total_loss += self.lossfn(edge_pred, edge_assn)

            # compute accuracy of assignment
            # need to multiply by batch size to be accurate
            #total_acc = (np.max(batch) + 1) * torch.tensor(secondary_matching_vox_efficiency(edge_index, edge_assn, edge_pred, primaries, clusts, len(clusts)))
            # use out['matched']
            total_acc += torch.tensor(
                secondary_matching_vox_efficiency2(out[2][i], group, primaries,
                                                   clusts))

        return {
            'primary_fdr': total_primary_fdr / ngpus,
            'primary_acc': total_primary_acc / ngpus,
            'accuracy': total_acc / ngpus,
            'loss': total_loss / ngpus,
            'n_iter': total_iter
        }
Exemple #7
0
    def forward(self, out, clusters, groups, primary):
        """
        out:
            array output from the DataParallel gather function
            out[0] - n_gpus tensors of edge indexes
            out[1] - n_gpus tensors of predicted edge weights from model forward
            out[2] - n_gpus arrays of group ids for each cluster
            out[3] - n_gpus number of iterations
        data:
            cluster_labels - n_gpus Nx5 tensors of (x, y, z, batch_id, cluster_id)
            group_labels - n_gpus Nx5 tensors of (x, y, z, batch_id, group_id) 
            em_primaries - n_gpus tensor of (x, y, z) coordinates of origins of EM primaries
        """
        total_loss, total_acc, total_primary_fdr, total_primary_acc, total_iter = 0., 0., 0., 0., 0
        total_ari, total_ami, total_sbd, total_pur, total_eff = 0., 0., 0., 0., 0.
        ngpus = len(clusters)
        for i in range(ngpus):
            data0 = clusters[i]
            data1 = groups[i]
            data2 = primary[i]

            clusts = form_clusters_new(data0)

            # remove compton clusters
            # if no cluster fits this condition, return
            if self.remove_compton:
                selection = filter_compton(
                    clusts)  # non-compton looking clusters
                if not len(selection):
                    edge_pred = out[1][i][0]
                    total_loss += self.lossfn(edge_pred, edge_pred)
                    total_acc += 1.

            clusts = clusts[selection]

            # process group data
            data_grp = data1

            # form primary/secondary bipartite graph
            primaries = assign_primaries(data2, clusts, data0)
            batch = get_cluster_batch(data0, clusts)
            # edge_index = primary_bipartite_incidence(batch, primaries)
            group = get_cluster_label(data_grp, clusts)

            primaries_true = assign_primaries(data2,
                                              clusts,
                                              data1,
                                              use_labels=True)
            primary_fdr, primary_tdr, primary_acc = analyze_primaries(
                primaries, primaries_true)
            total_primary_fdr += primary_fdr
            total_primary_acc += primary_acc

            niter = out[3][i][0]  # number of iterations
            total_iter += niter

            # loop over iterations and add loss at each iter.
            for j in range(niter):
                # determine true assignments
                edge_index = out[0][i][j]
                edge_assn = edge_assignment(edge_index,
                                            batch,
                                            group,
                                            cuda=True,
                                            dtype=torch.long)

                # get edge predictions (2 channels)
                edge_pred = out[1][i][j]

                edge_assn = edge_assn.view(-1)

                total_loss += self.lossfn(edge_pred, edge_assn)

            # compute accuracy of assignment
            total_acc += secondary_matching_vox_efficiency2(
                out[2][i], group, primaries, clusts)

            # get clustering metrics
            #print(out[2][i].shape)
            ari, ami, sbd, pur, eff = DBSCAN_cluster_metrics2(
                out[2][i].cpu().numpy(), clusts, group)
            total_ari += ari
            total_ami += ami
            total_sbd += sbd
            total_pur += pur
            total_eff += eff

        return {
            'primary_fdr': total_primary_fdr / ngpus,
            'primary_acc': total_primary_acc / ngpus,
            'ARI': ari / ngpus,
            'AMI': ami / ngpus,
            'SBD': sbd / ngpus,
            'purity': pur / ngpus,
            'efficiency': eff / ngpus,
            'accuracy': total_acc / ngpus,
            'loss': total_loss / ngpus,
            'n_iter': total_iter
        }
Exemple #8
0
    def forward(self, out, data0, data1):
        """
        out:
            dictionary output from GNN Model
            keys:
                'edge_pred': predicted edge weights from model forward
        data:
            data[0] - DBSCAN data
            data[1] - groups data
        """
        edge_pred = out[0][0]
        data0 = data0[0]
        data1 = data1[0]

        device = data0.device

        # first decide what true edges should be
        # need to form graph, then pass through GNN
        # clusts = form_clusters(data0)
        clusts = form_clusters_new(data0)

        # remove compton clusters
        # if no cluster fits this condition, return
        if self.remove_compton:
            selection = filter_compton(
                clusts, self.compton_thresh)  # non-compton looking clusters
            if not len(selection):
                total_loss = self.lossfn(edge_pred, edge_pred)
                return {'accuracy': 1., 'loss': total_loss}

            clusts = clusts[selection]

        # process group data
        # data_grp = process_group_data(data1, data0)
        data_grp = data1

        # form graph
        batch = get_cluster_batch(data0, clusts)
        edge_index = complete_graph(batch, device=device)

        if not edge_index.shape[0]:
            total_loss = self.lossfn(edge_pred, edge_pred)
            return {'accuracy': 0., 'loss': total_loss}
        group = get_cluster_label(data_grp, clusts)

        # determine true assignments
        edge_assn = edge_assignment(edge_index,
                                    batch,
                                    group,
                                    device=device,
                                    dtype=torch.long)

        edge_assn = edge_assn.view(-1)

        # total loss on batch
        total_loss = self.lossfn(edge_pred, edge_assn)

        # compute assigned clusters
        fe = edge_pred[1, :] - edge_pred[0, :]
        cs = assign_clusters_UF(edge_index, fe, len(clusts), thresh=0.0)

        ari, ami, sbd, pur, eff = DBSCAN_cluster_metrics2(cs, clusts, group)

        edge_ct = edge_index.shape[1]

        return {
            'ARI': ari,
            'AMI': ami,
            'SBD': sbd,
            'purity': pur,
            'efficiency': eff,
            'accuracy': ari,
            'loss': total_loss,
            'edge_count': edge_ct
        }
    def forward(self, edge_pred, data0, data1, data2):
        """
        edge_pred:
            predicted edge weights from model forward
        data:
            data[0] - 5 types data
            data[1] - groups data
            data[2] - primary data
        """
        data0 = data0[0]
        data1 = data1[0]
        data2 = data2[0]
        # first decide what true edges should be
        # need to form graph, then pass through GNN
        # clusts = form_clusters(data0)
        clusts = form_clusters_new(data0)

        # remove track-like particles
        # types = get_cluster_label(data0, clusts)
        # selection = types > 1 # 0 or 1 are track-like
        # clusts = clusts[selection]

        # remove compton clusters
        # if no cluster fits this condition, return
        selection = filter_compton(clusts)  # non-compton looking clusters
        if not len(selection):
            total_loss = self.lossfn(edge_pred, edge_pred)
            return {'accuracy': 1., 'loss_seg': total_loss}

        clusts = clusts[selection]

        # process group data
        # data_grp = process_group_data(data1, data0)
        data_grp = data1

        # form primary/secondary bipartite graph
        primaries = assign_primaries(data2, clusts, data0)
        batch = get_cluster_batch(data0, clusts)
        edge_index = primary_bipartite_incidence(batch, primaries)
        group = get_cluster_label(data_grp, clusts)

        primaries_true = assign_primaries(data2,
                                          clusts,
                                          data1,
                                          use_labels=True)
        print("primaries (est):  ", primaries)
        print("primaries (true): ", primaries_true)

        # determine true assignments
        edge_assn = edge_assignment(edge_index, batch, group, cuda=True)

        edge_assn = edge_assn.view(-1)
        edge_pred = edge_pred.view(-1)

        if self.balance:
            # weight edges so that 0/1 labels appear equally often
            ind0 = edge_assn == 0
            ind1 = edge_assn == 1
            # number in each class
            n0 = torch.sum(ind0).float()
            n1 = torch.sum(ind1).float()
            print("n0 = ", n0, " n1 = ", n1)
            # weights to balance classes
            w0 = n1 / (n0 + n1)
            w1 = n0 / (n0 + n1)
            print("w0 = ", w0, " w1 = ", w1)
            edge_assn[ind0] = w0 * edge_assn[ind0]
            edge_assn[ind1] = w1 * edge_assn[ind1]
            edge_pred = edge_pred.clone()
            edge_pred[ind0] = w0 * edge_pred[ind0]
            edge_pred[ind1] = w1 * edge_pred[ind1]

        total_loss = self.lossfn(edge_pred, edge_assn)

        # compute accuracy of assignment
        # need to multiply by batch size to be accurate
        total_acc = (np.max(batch) + 1) * torch.tensor(
            secondary_matching_vox_efficiency(edge_index, edge_assn, edge_pred,
                                              primaries, clusts, len(clusts)))

        return {'accuracy': total_acc, 'loss_seg': total_loss}