Exemple #1
0
def get_sample(src: DataItem, sample: int, label: str, reader=None):
    """generate data sample to be split (candidate for mlrun)
     
    Returns features matrix and header (x), and labels (y)
    :param src:    data artifact
    :param sample: sample size from data source, use negative 
                   integers to sample randomly, positive to
                   sample consecutively from the first row
    :param label:  label column title
    """
    table = src.as_df()

    # get sample
    if (sample == -1) or (sample >= 1):
        # get all rows, or contiguous sample starting at row 1.
        raw = table.dropna()
        labels = raw.pop(label)
        raw = raw.iloc[:sample, :]
        labels = labels.iloc[:sample]
    else:
        # grab a random sample
        raw = table.dropna().sample(sample * -1)
        labels = raw.pop(label)

    return raw, labels, raw.columns.values
Exemple #2
0
def xgb_test(
    context,
    models_path: DataItem,
    test_set: DataItem,
    label_column: str,
    plots_dest: str = "plots",
    default_model: str = "model.pkl",
) -> None:
    """Test one or more classifier models against held-out dataset

    Using held-out test features, evaluates the peformance of the estimated model

    Can be part of a kubeflow pipeline as a test step that is run post EDA and
    training/validation cycles

    :param context:         the function context
    :param models_path:     model artifact to be tested
    :param test_set:        test features and labels
    :param label_column:    column name for ground truth labels
    :param plots_dest:      dir for test plots
    :param default_model:   'model.pkl', default model artifact file name
    """
    xtest = test_set.as_df()
    ytest = xtest.pop(label_column)

    try:
        model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
        model_obj = load(open(model_file, "rb"))
    except Exception as a:
        raise Exception("model location likely misspecified")

    eval_metrics = eval_model_v2(context, xtest, ytest.values, model_obj)
Exemple #3
0
def test_classifier(
    context,
    models_path: DataItem,
    test_set: DataItem,
    label_column: str,
    score_method: str = "micro",
    plots_dest: str = "",
    model_evaluator=None,
    default_model: str = "model.pkl",
    predictions_column: str = "yscore",
    model_update=True,
) -> None:
    """Test one or more classifier models against held-out dataset

    Using held-out test features, evaluates the peformance of the estimated model

    Can be part of a kubeflow pipeline as a test step that is run post EDA and
    training/validation cycles

    :param context:            the function context
    :param models_path:        artifact models representing a file or a folder
    :param test_set:           test features and labels
    :param label_column:       column name for ground truth labels
    :param score_method:       for multiclass classification
    :param plots_dest:         dir for test plots
    :param model_evaluator:    NOT IMPLEMENTED: specific method to generate eval, passed in as string
                               or available in this folder
    :param predictions_column: column name for the predictions column on the resulted artifact
    :param model_update:       (True) update model, when running as stand alone no need in update
    """
    xtest = test_set.as_df()
    ytest = xtest.pop(label_column)

    try:
        model_file, model_obj, _ = get_model(models_path, suffix=".pkl")
        model_obj = load(open(model_file, "rb"))
    except Exception as a:
        raise Exception("model location likely specified")

    extra_data = eval_model_v2(context, xtest, ytest.values, model_obj)
    if model_obj and model_update == True:
        update_model(
            models_path,
            extra_data=extra_data,
            metrics=context.results,
            key_prefix="validation-",
        )

    y_hat = model_obj.predict(xtest)
    if y_hat.ndim == 1 or y_hat.shape[1] == 1:
        score_names = [predictions_column]
    else:
        score_names = [
            f"{predictions_column}_" + str(x) for x in range(y_hat.shape[1])
        ]

    df = pd.concat(
        [xtest, ytest, pd.DataFrame(y_hat, columns=score_names)], axis=1)
    context.log_dataset("test_set_preds", df=df, format="parquet", index=False)
def cox_test(
    context,
    models_path: DataItem,
    test_set: DataItem,
    label_column: str,
    plots_dest: str = "plots",
    model_evaluator=None,
) -> None:
    """Test one or more classifier models against held-out dataset

    Using held-out test features, evaluates the peformance of the estimated model

    Can be part of a kubeflow pipeline as a test step that is run post EDA and
    training/validation cycles

    :param context:         the function context
    :param model_file:      model artifact to be tested
    :param test_set:        test features and labels
    :param label_column:    column name for ground truth labels
    :param score_method:    for multiclass classification
    :param plots_dest:      dir for test plots
    :param model_evaluator: WIP: specific method to generate eval, passed in as string
                            or available in this folder
    """
    xtest = test_set.as_df()
    ytest = xtest.pop(label_column)

    model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
    model_obj = load(open(str(model_file), "rb"))

    try:
        if not model_evaluator:
            eval_metrics = eval_class_model(context, xtest, ytest, model_obj)

        model_plots = eval_metrics.pop("plots")
        model_tables = eval_metrics.pop("tables")
        for plot in model_plots:
            context.log_artifact(plot,
                                 local_path=f"{plots_dest}/{plot.key}.html")
        for tbl in model_tables:
            context.log_artifact(tbl,
                                 local_path=f"{plots_dest}/{plot.key}.csv")

        context.log_results(eval_metrics)
    except:
        context.log_dataset("cox-test-summary",
                            df=model_obj.summary,
                            index=True,
                            format="csv")
        context.logger.info("cox tester not implemented")
def open_archive(
    context: MLClientCtx,
    archive_url: DataItem,
    subdir: str = "content",
    key: str = "content",
    target_path: str = None,
):
    """Open a file/object archive into a target directory

    Currently supports zip and tar.gz

    :param context:      function execution context
    :param archive_url:  url of archive file
    :param subdir:       path within artifact store where extracted files
                         are stored
    :param key:          key of archive contents in artifact store
    :param target_path:  file system path to store extracted files (use either this or subdir)
    """
    os.makedirs(target_path or subdir, exist_ok=True)

    archive_url = archive_url.local()
    if archive_url.endswith("gz"):
        with tarfile.open(archive_url, mode="r|gz") as ref:
            ref.extractall(target_path or subdir)
    elif archive_url.endswith("zip"):
        with zipfile.ZipFile(archive_url, "r") as ref:
            ref.extractall(target_path or subdir)
    else:
        raise ValueError(f"unsupported archive type in {archive_url}")

    kwargs = {}
    if target_path:
        kwargs = {"target_path": target_path}
    else:
        kwargs = {"local_path": subdir}
    context.log_artifact(key, **kwargs)
Exemple #6
0
def load_dask(
        context: MLClientCtx,
        src_data: DataItem,
        dask_key: str = "dask_key",
        inc_cols: Optional[List[str]] = None,
        index_cols: Optional[List[str]] = None,
        dask_persist: bool = True,
        refresh_data: bool = True,
        scheduler_key: str = "scheduler"
) -> None:
    """Load dataset into an existing dask cluster

    dask jobs define the dask client parameters at the job level, this method will raise an error if no client is detected.

    :param context:         the function context
    :param src_data:        url of the data file or partitioned dataset as either
                            artifact DataItem, string, or path object (similar to
                            pandas read_csv)
    :param dask_key:        destination key of data on dask cluster and artifact store
    :param inc_cols:        include only these columns (very fast)
    :param index_cols:      list of index column names (can be a long-running process)
    :param dask_persist:    (True) should the data be persisted (through the `client.persist` op)
    :param refresh_data:    (False) if the dask_key already exists in the dask cluster, this will
                            raise an Exception.  Set to True to replace the existing cluster data.
    :param scheduler_key:   (scheduler) the dask scheduler configuration, json also logged as an artifact
    """
    if hasattr(context, "dask_client"):
        dask_client = context.dask_client
    else:
        raise Exception("a dask client was not found in the execution context")

    df = src_data.as_df(df_module=dd)

    if dask_persist:
        df = dask_client.persist(df)
        if dask_client.datasets and dask_key in dask_client.datasets:
            dask_client.unpublish_dataset(dask_key)
        dask_client.publish_dataset(df, name=dask_key)

    if context:
        context.dask_client = dask_client

    # share the scheduler, whether data is persisted or not
    dask_client.write_scheduler_file(scheduler_key + ".json")

    # we don't use log_dataset here until it can take into account
    # dask origin and apply dask describe.
    context.log_artifact(scheduler_key, local_path=scheduler_key + ".json")
def pandas_profiling_report(
    context: MLClientCtx,
    data: DataItem,
) -> None:
    """Create a Pandas Profiling Report for a dataset.
    :param context:         the function context
    :param data:            Dataset to create report for
    """

    df = data.as_df()

    profile = df.profile_report(title="Pandas Profiling Report")

    context.log_artifact(
        "Pandas Profiling Report",
        body=profile.to_html(),
        local_path="pandas_profiling_report.html",
    )
Exemple #8
0
def model_server_tester(context,
                        table: DataItem,
                        addr: str,
                        label_column: str = "label",
                        model: str = '',
                        match_err: bool = False,
                        rows: int = 20):
    """ Test a model server 
    
    :param table:         csv/parquet table with test data
    :param addr:          function address/url
    :param label_column:  name of the label column in table
    :param model:         tested model name 
    :param match_err:     raise error on validation (require proper test set)
    :param rows:          number of rows to use from test set
    """

    table = table.as_df()

    y_list = table.pop(label_column).values.tolist()
    context.logger.info(f'testing with dataset against {addr}, model: {model}')
    if rows and rows < table.shape[0]:
        table = table.sample(rows)

    count = err_count = match = 0
    times = []
    for x, y in zip(table.values, y_list):
        count += 1
        event_data = json.dumps({"inputs": [x.tolist()]})
        had_err = False
        try:
            start = datetime.now()
            resp = requests.put(f'{addr}/v2/models/{model}/infer',
                                json=event_data)
            if not resp.ok:
                context.logger.error(f'bad function resp!!\n{resp.text}')
                err_count += 1
                continue
            times.append((datetime.now() - start).microseconds)

        except OSError as err:
            context.logger.error(
                f'error in request, data:{event_data}, error: {err}')
            err_count += 1
            continue

        resp_data = resp.json()
        print(resp_data)
        y_resp = resp_data['outputs'][0]
        if y == y_resp:
            match += 1

    context.log_result('total_tests', count)
    context.log_result('errors', err_count)
    context.log_result('match', match)
    if count - err_count > 0:
        times_arr = np.array(times)
        context.log_result('avg_latency', int(np.mean(times_arr)))
        context.log_result('min_latency', int(np.amin(times_arr)))
        context.log_result('max_latency', int(np.amax(times_arr)))

        chart = ChartArtifact('latency', header=['Test', 'Latency (microsec)'])
        for i in range(len(times)):
            chart.add_row([i + 1, int(times[i])])
        context.log_artifact(chart)

    context.logger.info(
        f'run {count} tests, {err_count} errors and {match} match expected value'
    )

    if err_count:
        raise ValueError(f'failed on {err_count} tests of {count}')

    if match_err and match != count:
        raise ValueError(f'only {match} results match out of {count}')
Exemple #9
0
def summarize(
    context: MLClientCtx,
    table: DataItem,
    label_column: str = None,
    class_labels: List[str] = [],
    plot_hist: bool = True,
    plots_dest: str = "plots",
    update_dataset=False,
) -> None:
    """Summarize a table

    :param context:         the function context
    :param table:           MLRun input pointing to pandas dataframe (csv/parquet file path)
    :param label_column:    ground truth column label
    :param class_labels:    label for each class in tables and plots
    :param plot_hist:       (True) set this to False for large tables
    :param plots_dest:      destination folder of summary plots (relative to artifact_path)
    :param update_dataset:  when the table is a registered dataset update the charts in-place
    """
    df = table.as_df()
    header = df.columns.values
    extra_data = {}

    try:
        gcf_clear(plt)
        snsplt = sns.pairplot(df, hue=label_column)  # , diag_kws={"bw": 1.5})
        extra_data["histograms"] = context.log_artifact(
            PlotArtifact("histograms", body=plt.gcf()),
            local_path=f"{plots_dest}/hist.html",
            db_key=False,
        )
    except Exception as e:
        context.logger.error(
            f"Failed to create pairplot histograms due to: {e}")

    try:
        gcf_clear(plt)
        plot_cols = 3
        plot_rows = int((len(header) - 1) / plot_cols) + 1
        fig, ax = plt.subplots(plot_rows, plot_cols, figsize=(15, 4))
        fig.tight_layout(pad=2.0)
        for i in range(plot_rows * plot_cols):
            if i < len(header):
                sns.violinplot(
                    x=df[header[i]],
                    ax=ax[int(i / plot_cols)][i % plot_cols],
                    orient="h",
                    width=0.7,
                    inner="quartile",
                )
            else:
                fig.delaxes(ax[int(i / plot_cols)][i % plot_cols])
            i += 1
        extra_data["violin"] = context.log_artifact(
            PlotArtifact("violin", body=plt.gcf(), title="Violin Plot"),
            local_path=f"{plots_dest}/violin.html",
            db_key=False,
        )
    except Exception as e:
        context.logger.warn(
            f"Failed to create violin distribution plots due to: {e}")

    if label_column:
        labels = df.pop(label_column)
        imbtable = labels.value_counts(normalize=True).sort_index()
        try:
            gcf_clear(plt)
            balancebar = imbtable.plot(kind="bar",
                                       title="class imbalance - labels")
            balancebar.set_xlabel("class")
            balancebar.set_ylabel("proportion of total")
            extra_data["imbalance"] = context.log_artifact(
                PlotArtifact("imbalance", body=plt.gcf()),
                local_path=f"{plots_dest}/imbalance.html",
            )
        except Exception as e:
            context.logger.warn(
                f"Failed to create class imbalance plot due to: {e}")
        context.log_artifact(
            TableArtifact("imbalance-weights-vec",
                          df=pd.DataFrame({"weights": imbtable})),
            local_path=f"{plots_dest}/imbalance-weights-vec.csv",
            db_key=False,
        )

    tblcorr = df.corr()
    mask = np.zeros_like(tblcorr, dtype=np.bool)
    mask[np.triu_indices_from(mask)] = True

    dfcorr = pd.DataFrame(data=tblcorr, columns=header, index=header)
    dfcorr = dfcorr[
        np.arange(dfcorr.shape[0])[:, None] > np.arange(dfcorr.shape[1])]
    context.log_artifact(
        TableArtifact("correlation-matrix", df=tblcorr, visible=True),
        local_path=f"{plots_dest}/correlation-matrix.csv",
        db_key=False,
    )

    try:
        gcf_clear(plt)
        ax = plt.axes()
        sns.heatmap(tblcorr, ax=ax, mask=mask, annot=False, cmap=plt.cm.Reds)
        ax.set_title("features correlation")
        extra_data["correlation"] = context.log_artifact(
            PlotArtifact("correlation",
                         body=plt.gcf(),
                         title="Correlation Matrix"),
            local_path=f"{plots_dest}/corr.html",
            db_key=False,
        )
    except Exception as e:
        context.logger.warn(
            f"Failed to create features correlation plot due to: {e}")

    gcf_clear(plt)
    if update_dataset and table.meta and table.meta.kind == "dataset":
        from mlrun.artifacts import update_dataset_meta

        update_dataset_meta(table.meta, extra_data=extra_data)
Exemple #10
0
def describe_spark(context: MLClientCtx,
                   dataset: DataItem,
                   artifact_path,
                   bins: int = 30,
                   describe_extended: bool = True):

    location = dataset.local()

    spark = SparkSession.builder.appName("Spark job").getOrCreate()

    df = spark.read.csv(location, header=True, inferSchema=True)

    kwargs = []

    float_cols = [
        item[0] for item in df.dtypes
        if item[1].startswith('float') or item[1].startswith('double')
    ]

    if describe_extended == True:

        table, variables, freq = describe(df, bins, float_cols, kwargs)

        tbl_1 = variables.reset_index()

        if len(freq) != 0:
            tbl_2 = pd.DataFrame.from_dict(
                freq, orient="index").sort_index().stack().reset_index()
            tbl_2.columns = ['col', 'key', 'val']
            tbl_2['Merged'] = [{
                key: val
            } for key, val in zip(tbl_2.key, tbl_2.val)]
            tbl_2 = tbl_2.groupby(
                'col',
                as_index=False).agg(lambda x: tuple(x))[['col', 'Merged']]

            summary = pd.merge(tbl_1,
                               tbl_2,
                               how='left',
                               left_on='index',
                               right_on='col')

        else:
            summary = tbl_1

        context.log_dataset("summary_stats",
                            df=summary,
                            format="csv",
                            index=False,
                            artifact_path=context.artifact_subpath('data'))

        context.log_results(table)

    else:
        tbl_1 = df.describe().toPandas()

        summary = tbl_1.T

        context.log_dataset("summary_stats",
                            df=summary,
                            format="csv",
                            index=False,
                            artifact_path=context.artifact_subpath('data'))

    spark.stop()
Exemple #11
0
def train_model(context: MLClientCtx,
                dataset: DataItem,
                model_pkg_class: str,
                label_column: str = "label",
                train_validation_size: float = 0.75,
                sample: float = 1.0,
                models_dest: str = "models",
                test_set_key: str = "test_set",
                plots_dest: str = "plots",
                dask_key: str = "dask_key",
                dask_persist: bool = False,
                scheduler_key: str = '',
                file_ext: str = "parquet",
                random_state: int = 42) -> None:
    """
    Train a sklearn classifier with Dask
    
    :param context:                 Function context.
    :param dataset:                 Raw data file.
    :param model_pkg_class:         Model to train, e.g, "sklearn.ensemble.RandomForestClassifier", 
                                    or json model config.
    :param label_column:            (label) Ground-truth y labels.
    :param train_validation_size:   (0.75) Train validation set proportion out of the full dataset.
    :param sample:                  (1.0) Select sample from dataset (n-rows/% of total), randomzie rows as default.
    :param models_dest:             (models) Models subfolder on artifact path.
    :param test_set_key:            (test_set) Mlrun db key of held out data in artifact store.
    :param plots_dest:              (plots) Plot subfolder on artifact path.
    :param dask_key:                (dask key) Key of dataframe in dask client "datasets" attribute.
    :param dask_persist:            (False) Should the data be persisted (through the `client.persist`)
    :param scheduler_key:           (scheduler) Dask scheduler configuration, json also logged as an artifact.
    :param file_ext:                (parquet) format for test_set_key hold out data
    :param random_state:            (42) sklearn seed
    """

    if scheduler_key:
        client = Client(scheduler_key)

    else:
        client = Client()

    context.logger.info("Read Data")
    df = dataset.as_df(df_module=dd)

    context.logger.info("Prep Data")
    numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    df = df.select_dtypes(include=numerics)

    if df.isna().any().any().compute() == True:
        raise Exception('NAs valus found')

    df_header = df.columns

    df = df.sample(frac=sample).reset_index(drop=True)
    encoder = LabelEncoder()
    encoder = encoder.fit(df[label_column])
    X = df.drop(label_column, axis=1).to_dask_array(lengths=True)
    y = encoder.transform(df[label_column])

    classes = df[label_column].drop_duplicates()  # no unique values in dask
    classes = [str(i) for i in classes]

    context.logger.info("Split and Train")
    X_train, X_test, y_train, y_test = model_selection.train_test_split(
        X, y, train_size=train_validation_size, random_state=random_state)

    scaler = StandardScaler()
    scaler = scaler.fit(X_train)
    X_train_transformed = scaler.transform(X_train)
    X_test_transformed = scaler.transform(X_test)

    model_config = gen_sklearn_model(model_pkg_class,
                                     context.parameters.items())

    model_config["FIT"].update({"X": X_train_transformed, "y": y_train})

    ClassifierClass = create_class(model_config["META"]["class"])

    model = ClassifierClass(**model_config["CLASS"])

    with joblib.parallel_backend("dask"):

        model = model.fit(**model_config["FIT"])

    artifact_path = context.artifact_subpath(models_dest)

    plots_path = context.artifact_subpath(models_dest, plots_dest)

    context.logger.info("Evaluate")
    extra_data_dict = {}
    for report in (ROCAUC, ClassificationReport, ConfusionMatrix):

        report_name = str(report.__name__)
        plt.cla()
        plt.clf()
        plt.close()

        viz = report(model, classes=classes, per_class=True, is_fitted=True)
        viz.fit(X_train_transformed,
                y_train)  # Fit the training data to the visualizer
        viz.score(X_test_transformed,
                  y_test.compute())  # Evaluate the model on the test data

        plot = context.log_artifact(PlotArtifact(report_name,
                                                 body=viz.fig,
                                                 title=report_name),
                                    db_key=False)
        extra_data_dict[str(report)] = plot

        if report_name == 'ROCAUC':
            context.log_results({
                "micro": viz.roc_auc.get("micro"),
                "macro": viz.roc_auc.get("macro")
            })

        elif report_name == 'ClassificationReport':
            for score_name in viz.scores_:
                for score_class in viz.scores_[score_name]:

                    context.log_results({
                        score_name + "-" + score_class:
                        viz.scores_[score_name].get(score_class)
                    })

    viz = FeatureImportances(model,
                             classes=classes,
                             per_class=True,
                             is_fitted=True,
                             labels=df_header.delete(
                                 df_header.get_loc(label_column)))
    viz.fit(X_train_transformed, y_train)
    viz.score(X_test_transformed, y_test)

    plot = context.log_artifact(PlotArtifact("FeatureImportances",
                                             body=viz.fig,
                                             title="FeatureImportances"),
                                db_key=False)
    extra_data_dict[str("FeatureImportances")] = plot

    plt.cla()
    plt.clf()
    plt.close()

    context.logger.info("Log artifacts")
    artifact_path = context.artifact_subpath(models_dest)

    plots_path = context.artifact_subpath(models_dest, plots_dest)

    context.set_label('class', model_pkg_class)

    context.log_model("model",
                      body=dumps(model),
                      artifact_path=artifact_path,
                      model_file="model.pkl",
                      extra_data=extra_data_dict,
                      metrics=context.results,
                      labels={"class": model_pkg_class})

    context.log_artifact("standard_scaler",
                         body=dumps(scaler),
                         artifact_path=artifact_path,
                         model_file="scaler.gz",
                         label="standard_scaler")

    context.log_artifact("label_encoder",
                         body=dumps(encoder),
                         artifact_path=artifact_path,
                         model_file="encoder.gz",
                         label="label_encoder")

    df_to_save = delayed(np.column_stack)((X_test, y_test)).compute()
    context.log_dataset(
        test_set_key,
        df=pd.DataFrame(df_to_save,
                        columns=df_header),  # improve log dataset ability
        format=file_ext,
        index=False,
        labels={"data-type": "held-out"},
        artifact_path=context.artifact_subpath('data'))

    context.logger.info("Done!")
Exemple #12
0
def permutation_importance(
    context: MLClientCtx,
    model: DataItem,
    dataset: DataItem,
    labels: str,
    figsz=(10, 5),
    plots_dest: str = "plots",
    fitype: str = "permute",
) -> pd.DataFrame:
    """calculate change in metric

    type 'permute' uses a pre-estimated model
    type 'dropcol' uses a re-estimates model

    :param context:     the function's execution context
    :param model:       a trained model
    :param dataset:     features and ground truths, regression targets
    :param labels       name of the ground truths column
    :param figsz:       matplotlib figure size
    :param plots_dest:  path within artifact store
    :
    """
    model_file, model_data, _ = get_model(model.url, suffix=".pkl")
    model = load(open(str(model_file), "rb"))

    X = dataset.as_df()
    y = X.pop(labels)
    header = X.columns

    metric = _oob_classifier_accuracy

    baseline = metric(model, X, y)

    imp = []
    for col in X.columns:
        if fitype is "permute":
            save = X[col].copy()
            X[col] = np.random.permutation(X[col])
            m = metric(model, X, y)
            X[col] = save
            imp.append(baseline - m)
        elif fitype is "dropcol":
            X_ = X.drop(col, axis=1)
            model_ = clone(model)
            #model_.random_state = random_state
            model_.fit(X_, y)
            o = model_.oob_score_
            imp.append(baseline - o)
        else:
            raise ValueError(
                "unknown fitype, only 'permute' or 'dropcol' permitted")

    zipped = zip(imp, header)
    feature_imp = pd.DataFrame(sorted(zipped),
                               columns=["importance", "feature"])
    feature_imp.sort_values(by="importance", ascending=False, inplace=True)

    plt.clf()
    plt.figure(figsize=figsz)
    sns.barplot(x="importance", y="feature", data=feature_imp)
    plt.title(f"feature importances-{fitype}")
    plt.tight_layout()

    context.log_artifact(
        PlotArtifact(f"feature importances-{fitype}", body=plt.gcf()),
        local_path=f"{plots_dest}/feature-permutations.html",
    )
    context.log_dataset(f"feature-importances-{fitype}-tbl",
                        df=feature_imp,
                        index=False)
Exemple #13
0
def data_clean(context: MLClientCtx,
               src: DataItem,
               file_ext: str = "csv",
               models_dest: str = "models/encoders",
               cleaned_key: str = "cleaned-data",
               encoded_key: str = "encoded-data"):
    df = src.as_df()

    # drop columns
    drop_cols_list = ["customerID", "TotalCharges"]
    df.drop(drop_cols_list, axis=1, inplace=True)

    # header transformations
    old_cols = df.columns
    rename_cols_map = {
        "SeniorCitizen": "senior",
        "Partner": "partner",
        "Dependents": "deps",
        "Churn": "labels"
    }
    df.rename(rename_cols_map, axis=1, inplace=True)

    # add drop column to logs:
    for col in drop_cols_list:
        rename_cols_map.update({col: "_DROPPED_"})

    # log the op
    tp = os.path.join(models_dest, "preproc-column_map.json")
    context.log_artifact("preproc-column_map.json",
                         body=json.dumps(rename_cols_map),
                         local_path=tp)
    df = df.applymap(lambda x: "No" if str(x).startswith("No ") else x)

    # encode numerical type as category bins (ordinal)
    bins = [0, 12, 24, 36, 48, 60, np.inf]
    labels = [0, 1, 2, 3, 4, 5]
    tenure = df.tenure.copy(deep=True)
    df["tenure_map"] = pd.cut(df.tenure, bins, labels=False)
    tenure_map = dict(zip(bins, labels))
    # save this transformation
    tp = os.path.join(models_dest, "preproc-numcat_map.json")
    context.log_artifact("preproc-numcat_map.json",
                         body=bytes(json.dumps(tenure_map).encode("utf-8")),
                         local_path=tp)

    context.log_dataset(cleaned_key, df=df, format=file_ext, index=False)
    fix_cols = [
        "gender", "partner", "deps", "OnlineSecurity", "OnlineBackup",
        "DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies",
        "PhoneService", "MultipleLines", "PaperlessBilling", "InternetService",
        "Contract", "PaymentMethod", "labels"
    ]

    d = defaultdict(LabelEncoder)
    df[fix_cols] = df[fix_cols].apply(
        lambda x: d[x.name].fit_transform(x.astype(str)))
    context.log_dataset(encoded_key, df=df, format=file_ext, index=False)

    model_bin = dumps(d)
    context.log_model("model",
                      body=model_bin,
                      artifact_path=os.path.join(context.artifact_path,
                                                 models_dest),
                      model_file="model.pkl")
Exemple #14
0
def data_clean(
    context: MLClientCtx,
    src: DataItem,
    file_ext: str = "csv",
    models_dest: str = "models/encoders",
    cleaned_key: str = "cleaned-data",
    encoded_key: str = "encoded-data",
):
    """process a raw churn data file

    Data has 3 states here: `raw`, `cleaned` and `encoded`

    * `raw` kept by default, the pipeline begins with a raw data artifact
    * `cleaned` kept for charts, presentations
    * `encoded` is input for a cross validation and training function

    steps (not necessarily in correct order, some parallel)
    * column name maps
    * deal with nans and other types of missings/junk
    * label encode binary and ordinal category columns
    * create category ranges from numerical columns
    And finally,
    * test

    Why we don't one-hot-encode here? One hot encoding isn't a necessary
    step for all algorithms. It can also generate a very large feature
    matrix that doesn't need to be serialized (even if sparse).
    So we leave one-hot-encoding for the training step.

    What about scaling numerical columns? Same as why we don't one hot
    encode here. Do we scale before train-test split?  IMHO, no.  Scaling
    before splitting introduces a type of data leakage.  In addition,
    many estimators are completely immune to the monotonic transformations
    implied by scaling, so why waste the cycles?

    TODO:
        * parallelize where possible
        * more abstraction (more parameters, chain sklearn transformers)
        * convert to marketplace function

    :param context:          the function execution context
    :param src:              an artifact or file path
    :param file_ext:         file type for artifacts
    :param models_dest:       label encoders and other preprocessing steps
                             should be saved together with other pipeline
                             models
    :param cleaned_key:      key of cleaned data table in artifact store
    :param encoded_key:      key of encoded data table in artifact store
    """
    df = src.as_df()

    # drop columns
    drop_cols_list = ["customerID", "TotalCharges"]
    df.drop(drop_cols_list, axis=1, inplace=True)

    # header transformations
    rename_cols_map = {
        "SeniorCitizen": "senior",
        "Partner": "partner",
        "Dependents": "deps",
        "Churn": "labels",
    }
    df.rename(rename_cols_map, axis=1, inplace=True)

    # add drop column to logs:
    for col in drop_cols_list:
        rename_cols_map.update({col: "_DROPPED_"})

    # log the op
    tp = os.path.join(models_dest, "preproc-column_map.json")
    context.log_artifact("preproc-column_map.json",
                         body=json.dumps(rename_cols_map),
                         local_path=tp)

    # VALUE transformations

    # clean
    # truncate reply to "No"
    df = df.applymap(lambda x: "No" if str(x).startswith("No ") else x)

    # encode numerical type as category bins (ordinal)
    bins = [0, 12, 24, 36, 48, 60, np.inf]
    labels = [0, 1, 2, 3, 4, 5]
    df["tenure_map"] = pd.cut(df.tenure, bins, labels=False)
    tenure_map = dict(zip(bins, labels))
    # save this transformation
    tp = os.path.join(models_dest, "preproc-numcat_map.json")
    context.log_artifact(
        "preproc-numcat_map.json",
        body=bytes(json.dumps(tenure_map).encode("utf-8")),
        local_path=tp,
    )

    context.log_dataset(cleaned_key, df=df, format=file_ext, index=False)

    # label encoding - generate model for each column saved in dict
    # some of these columns may be hot encoded in the training step
    fix_cols = [
        "gender",
        "partner",
        "deps",
        "OnlineSecurity",
        "OnlineBackup",
        "DeviceProtection",
        "TechSupport",
        "StreamingTV",
        "StreamingMovies",
        "PhoneService",
        "MultipleLines",
        "PaperlessBilling",
        "InternetService",
        "Contract",
        "PaymentMethod",
        "labels",
    ]

    d = defaultdict(LabelEncoder)
    df[fix_cols] = df[fix_cols].apply(
        lambda x: d[x.name].fit_transform(x.astype(str)))
    context.log_dataset(encoded_key, df=df, format=file_ext, index=False)

    model_bin = dumps(d)
    context.log_model(
        "model",
        body=model_bin,
        artifact_path=os.path.join(context.artifact_path, models_dest),
        model_file="model.pkl",
    )
Exemple #15
0
def arc_to_parquet(context: MLClientCtx,
                   archive_url: DataItem,
                   header: List[str] = [None],
                   chunksize: int = 0,
                   dtype=None,
                   encoding: str = "latin-1",
                   key: str = "data",
                   dataset: str = "None",
                   part_cols=[],
                   file_ext: str = "parquet",
                   index: bool = False,
                   refresh_data: bool = False,
                   stats: bool = False) -> None:
    """Open a file/object archive and save as a parquet file or dataset

    Notes
    -----
    * this function is typically for large files, please be sure to check all settings
    * partitioning requires precise specification of column types.
    * the archive_url can be any file readable by pandas read_csv, which includes tar files
    * if the `dataset` parameter is not empty, then a partitioned dataset will be created
    instead of a single file in the folder `dataset`
    * if a key exists already then it will not be re-acquired unless the `refresh_data` param
    is set to `True`.  This is in case the original file is corrupt, or a refresh is
    required.

    :param context:        the function context
    :param archive_url:    MLRun data input (DataItem object)
    :param chunksize:      (0) when > 0, row size (chunk) to retrieve
                           per iteration
    :param dtype           destination data type of specified columns
    :param encoding        ("latin-8") file encoding
    :param key:            key in artifact store (when log_data=True)
    :param dataset:        (None) if not None then "target_path/dataset"
                           is folder for partitioned files
    :param part_cols:      ([]) list of partitioning columns
    :param file_ext:       (parquet) csv/parquet file extension
    :param index:          (False) pandas save index option
    :param refresh_data:   (False) overwrite existing data at that location
    :param stats:          (None) calculate table stats when logging artifact
    """
    base_path = context.artifact_path
    os.makedirs(base_path, exist_ok=True)

    archive_url = archive_url.local()

    if dataset is not None:
        dest_path = os.path.join(base_path, dataset)
        exists = os.path.isdir(dest_path)
    else:
        dest_path = os.path.join(base_path, key + f".{file_ext}")
        exists = os.path.isfile(dest_path)

    if not exists:
        context.logger.info("destination file does not exist, downloading")
        if chunksize > 0:
            header = _chunk_readwrite(archive_url, dest_path, chunksize,
                                      encoding, dtype, dataset)
            context.log_dataset(key=key,
                                stats=stats,
                                format='parquet',
                                target_path=dest_path)
        else:
            df = pd.read_csv(archive_url)
            context.log_dataset(key, df=df, format=file_ext, index=index)
    else:
        context.logger.info("destination file already exists, nothing done")