Exemple #1
0
    def test_feature_set_db(self):
        name = "stocks_test"
        stocks_set = fs.FeatureSet(
            name, entities=[Entity("ticker", ValueType.STRING)])
        fs.preview(
            stocks_set,
            stocks,
        )
        stocks_set.save()
        db = mlrun.get_run_db()

        sets = db.list_feature_sets(self.project_name, name)
        assert len(sets) == 1, "bad number of results"

        feature_set = fs.get_feature_set(name, self.project_name)
        assert feature_set.metadata.name == name, "bad feature set response"

        fs.ingest(stocks_set, stocks)
        with pytest.raises(mlrun.errors.MLRunPreconditionFailedError):
            fs.delete_feature_set(name, self.project_name)

        stocks_set.purge_targets()

        fs.delete_feature_set(name, self.project_name)
        sets = db.list_feature_sets(self.project_name, name)
        assert not sets, "Feature set should be deleted"
Exemple #2
0
    def test_feature_set_db(self):
        name = "stocks_test"
        stocks_set = fs.FeatureSet(name, entities=[Entity("ticker", ValueType.STRING)])
        fs.infer_metadata(
            stocks_set, stocks,
        )
        stocks_set.save()
        db = mlrun.get_run_db()

        sets = db.list_feature_sets(self.project_name, name)
        assert len(sets) == 1, "bad number of results"

        feature_set = fs.get_feature_set(name, self.project_name)
        assert feature_set.metadata.name == name, "bad feature set response"

        fs.delete_feature_set(name, self.project_name)
        sets = db.list_feature_sets(self.project_name, name)
        assert not sets, "Feature set should be deleted"