Exemple #1
0
import sys

import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

sys.path.append('..')
from mlscratch.models.logistic_regression import LogisticRegression
from mlscratch.metrics import accuracy_score

if __name__ == '__main__':
    X, y = load_breast_cancer(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X, y)

    model = LogisticRegression()

    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    acc = accuracy_score(y_test, y_pred)
    print(f'Accuracy: {acc}')

    plt.plot(model.train_metric_list)
    plt.title('Training BCE')
    plt.xlabel('Iterations')
    plt.ylabel('Binary Cross Entropy')
    plt.show()
import sys

sys.path.append('../')

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from mlscratch.models.k_neighbor import KNN
from mlscratch.metrics import accuracy_score

if __name__ == '__main__':
    X, y = load_iris(return_X_y=True)
    X = StandardScaler().fit_transform(X)
    X_train, X_valid, y_train, y_valid = train_test_split(X,
                                                          y,
                                                          shuffle=True,
                                                          random_state=27)

    model = KNN()
    model.fit(X_train, y_train)
    y_pred_proba = model.predict(X_valid)
    y_pred = np.round(y_pred_proba)

    acc = accuracy_score(y_valid, y_pred)
    print(f'Accuracy: {acc}')
Exemple #3
0
 def test_return(self):
     acc = metrics.accuracy_score(self.y_true, self.y_pred)
     self.assertAlmostEqual(acc, 0.75)
     self.assertIsInstance(acc, np.float64)
Exemple #4
0
import sys

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder

sys.path.append('..')
from mlscratch.models.multilayer_perceptron import MLP
from mlscratch.metrics import accuracy_score

if __name__ == '__main__':
    X, y = load_iris(return_X_y=True)
    encoder = OneHotEncoder()
    y = encoder.fit_transform(y.reshape(-1, 1)).toarray()
    X_train, X_valid, y_train, y_valid = train_test_split(X,
                                                          y,
                                                          shuffle=True,
                                                          random_state=27)

    model = MLP(num_hidden=64)
    model.fit(X_train, y_train)

    y_pred = model.predict(X_valid)
    acc = accuracy_score(y_valid.argmax(axis=1), y_pred.argmax(axis=1))

    print(f'Accuracy: {acc}')