Exemple #1
0
 def __init__(self,
              obj,
              X=None,
              labels=None,
              labels_true=None,
              store_X=False,
              digits=3):
     self.model = obj
     self.components = obj.n_components
     self.variables = obj.n_features_in_
     self.covariance_type = obj.covariance_type
     self.centers = _clust_centers(obj.means_)
     self.covariance = obj.covariances_
     self.labels, self.proba, self.cluster_size = _clust_proba(
         obj, X, labels)
     self.labels_names = np.unique(self.labels)
     self.cluster_weights = pd.DataFrame(obj.weights_)
     self.ARI, self.FM = _clustering_evaluation(self.labels, labels_true,
                                                digits)
     self.SIL, self.DB, self.CH = _clustering_metrics(
         self.labels, X, digits)
     self.BIC, self.AIC = _criterion_gmm(obj, X, digits)
     self.iter = obj.n_iter_
     self.init = obj.n_init
     self.init_type = obj.init_params
     self.X = _store_X(X, store_X)
     self.labels_true = labels_true
Exemple #2
0
 def __init__(self, obj, X = 'None', labels_true=None, store_X=False, digits = 3):
     self.model = obj
     self.n_clusters = obj.n_clusters
     self.variables = np.shape(obj.centers)[1]
     self.centers = _clust_centers(obj.centers)
     self.labels = MAP(obj.u)
     self.cluster_size, self.cluster_weights = _clust_weight(self.labels)
     self.ARI, self.FM = _clustering_evaluation(self.labels, labels_true, digits)
     self.fuzzy = obj.m
     self.membership = obj.u
     self.X = _store_X(X, store_X)
     self.labels_true = labels_true
Exemple #3
0
 def __init__(self, obj, X=None, labels_true=None, store_X=False, digits = 3):
     self.model = obj
     self.n_clusters = obj.n_clusters
     self.variables = np.shape(obj.cluster_centers_)[1]
     self.SIL, self.DB, self.CH = _clustering_metrics(obj.labels_, X, digits)
     self.centers = _clust_centers(obj.cluster_centers_)
     self.labels = obj.labels_
     self.labels_names = np.unique(obj.labels_)
     self.cluster_size, self.cluster_weights = _clust_weight(obj.labels_)
     self.ARI, self.FM = _clustering_evaluation(obj.labels_, labels_true, digits)
     self.iter = obj.n_iter_
     self.init = obj.n_init
     self.init_type = obj.init
     self.algorithm_type = obj._algorithm
     self.X = _store_X(X, store_X)
     self.labels_true = labels_true
Exemple #4
0
 def __init__(self, obj, X=None, labels_true=None, store_X=False, digits=3):
     self.model = obj
     self.n_clusters = np.unique(obj.labels_).shape[0]
     self.variables = obj.n_features_in_
     self.SIL, self.DB, self.CH = _clustering_metrics(
         obj.labels_, X, digits)
     self.centers = _clust_centers_X(X, obj.labels_)
     self.labels = obj.labels_
     self.labels_names = obj.n_features_in_
     self.cluster_size, self.cluster_weights = _clust_weight(obj.labels_)
     self.ARI, self.FM = _clustering_evaluation(obj.labels_, labels_true,
                                                digits)
     self.eps = obj.eps
     self.min_samples = obj.min_samples
     self.metric = obj.metric
     self.power_mink = obj.p
     self.leaf = obj.leaf_size
     self.algorithm_type = obj.algorithm
     self.X = _store_X(X, store_X)
     self.labels_true = labels_true